• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 27
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 128
  • 128
  • 55
  • 24
  • 24
  • 22
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Emissão do CO2 do solo em diferentes posições topográficas em área sob cultivo de cana-de-açúcar /

Brito, Liziane de Figueiredo. January 2008 (has links)
Resumo: A variação espacial e temporal da emissão de CO2 do solo é influenciada por atributos do solo relacionados à produção e ao transporte do gás soloatmosfera. Entretanto, ainda são escassos estudos visando compreender o efeito da topografia sobre a variabilidade da emissão de CO2 do solo, especialmente em área de conversão para o sistema de colheita da cana-de-açúcar mecanizada sem queima. Este trabalho tem como objetivo estudar as variações da emissão de CO2 do solo, em área cultivada com cana-de-açúcar, com histórico de colheita mecanizada sem queima, sob diferentes formas do relevo e posições na encosta. Foram selecionadas uma área situada numa superfície côncava (CONC) e outras duas em posições contrastantes numa superfície linear (encosta superior - ESUP e encosta inferior - EINF). Foram conduzidas avaliações da emissão de CO2 e de atributos do solo, nas três áreas, em duas situações distintas: (1) em 2004, um mês após plantio da cana-de-açúcar, foram conduzidas avaliações em pontos aleatórios em cada uma das três áreas, num mesmo dia, sendo a emissão de CO2, temperatura e umidade do solo avaliados ao longo de 7 meses e, (2) em 2005, um mês após o corte mecanizado da cana-de-açúcar crua, foi caracterizada a variabilidade espacial da emissão de CO2 e demais atributos do solo, por meio da semivariância, nas mesmas posições topográficas. A emissão total de CO2 no período de 7 meses de estudo em 2004 foi 19,26, 23,03 e 22,29 Mg CO2 ha-1 nas áreas CONC, ESUP e EINF, respectivamente. A variação temporal da emissão foi explicada por uma relação exponencial com temperatura, e uma relação linear com umidade do solo. O valor de 10 Q , calculado para as posições CONC, ESUP e EINF, foi de 1,98 (±0,34), 1,81 (±0,49) e 1,71 (±0,31). O efeito da forma do relevo e da posição topográfica sobre a variação da emissão de CO2 do ...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The spatial and temporal variation of soil CO2 emission is influenced by several soil attributes related to CO2 production and gas transport from soil to atmosphere. However, few studies aiming to understand the effect of topography on the variability of CO2 emissions exist, especially on the sugarcane harvest system without prior burning. The objective of this work was to study the spatial and temporal changes of the soil CO2 emission in an area cultivated with sugar cane, having a mechanized crop system, under different relief forms and slope positions. In a landscape it was selected one area located in a concave form (CONC) and two others located at superior (ESUP) and inferior (EINF) positions in a linear form. It was conducted measurements of soil CO2 emission and soil attributes at the three different locations in two different situations: (1) in 2004, one month after sugarcane plantation, measurements were conducted with randomized repetitions for each area in each sampling day, and soil CO2 emission, soil temperature and soil moisture were also monitored during a period of 7 months, and (2) in 2005, one month after sugarcane harvesting without burning, the spatial variability of soil CO2 emission and soil attributes were characterized by the semivariance in the same topographic positions. Total soil CO2 emission during this period was 19,26, 23,03 e 22,29 Mg CO2 ha-1 for CONC, ESUP e EINF areas, respectively. Temporal variability of soil CO2 emission was explained by an exponential function with soil temperature and a linear function with soil moisture. The 10 Q values were 1.98 (±0.34), 1.81 (±0.49) and 1.71 (±0.31) for CONC, ESUP and EINF, respectively. The effect of relief form and topographic position on soil CO2 emission variation was dependent on the time of measurement. Bulk density, macroporosity, penetration resistance, aggregation and oxidizable organic ...(Comlete abstract, click electronic access below) / Orientador: Newton La Scala Júnior / Coorientador: José Marques Júnior / Banca: Carlos Eduardo Pellegrino Cerri / Banca: Zigomar Menezes de Souza / Banca: Gener Tadeu Pereira / Banca: Wanderley José de Melo / Doutor
102

Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of Southern Ecuador: influence of altitude

Iost, Susanne 07 December 2007 (has links)
Impacts of land use and climate change in tropical forests on the global carbon budget are of principal interest in the recent research, as these forests amount to about 48 % of the world’s forested area. Interest has been focused on lowland tropical forests mainly, but tropical montane forests occupy about 20 % of all tropical forests. Soils of tropical montane forests are frequently waterlogged and characterised by high soil organic carbon stocks. Furthermore, along altitudinal gradients, changes in stand structure and net primary production can be observed that have not been fully explained yet. As causes reduced microbial activity and nitrogen turnover in soils of tropical montane forests have been suggested. Against the background of climate change, carbon turnover mechanisms in soils of these forests are of special interest. The present study therefore aimed at determining and quantifying relevant carbon and nitrogen pools as well as nitrogen mineralisation potentials. Furthermore, size, activity, and structure of microbial biomass were characterised. The collected data was supposed to provide basic knowledge on carbon and nitrogen cycling in tropical montane forest soils. Thus, evaluation of the susceptibility of their carbon stocks for climate change as well as nitrogen and carbon limitation of microbial organic matter decomposition was possible. Field work of this study was conducted during 2003–2005 at an altitudinal transect that in- cluded five study sites between 1 050 and 3 060 m amsl. Total soil respiration was recorded biweekly over two years, the contribution of roots to total soil CO2 efflux over one year. Soils of the study sites were sampled twice and biochemical and microbial parameters were determined.
103

Characterizing And Quantifying Ecosystem Component CO2 Emissions From Different-Aged, Planted, Pine Forests / Component CO2 Emissions of Planted Pine Forests

Khomik, Myroslava 04 1900 (has links)
<p> The rapid increase of athropogenically-derived CO2 in the atmposphere, during the past century, has been linked to unprecendented global climate change. Forests and various forest management techniques have been proposed as a potential way to help sequester some ofthe atmpospheric CO2. In order to evaluate the CO2 sink potential offorests, a good understanding oftheir carbon dynamics is required over various stages oftheir development and growth. </p> <p> This dissertation reports results of a field study that focused on characterizing and quantifying CO2 emissions from various components of planted white pine (Pinus Strobus L.) forest ecosystems, growing in southern Ontario, Canada. The study site, called the Turkey Point Flux Station (TPFS), consisted offour stands, aged: 70-, 35-, 20-and 7 years-old, as of year 2009. Three major components of ecosystem respiration, Re, were studied using the chamber-method: soil respiration, Rs (both, autotrophic and heterotrophic ), foliar respiration, Rf, and live woody-tissue respiration, Rw. </p> <p> Chamber-based estimates of annual Re across the four different stands were: 1527 ± 137, 1313 ± 137, 2079 ± 293, and 769 ± 46 g C m^(-2) yr^(-1) for the 70-, 35-, 20-, and 7-year-old stands, respectively, and were generally higher compared to literature reported values. Annually Rf accounted for 48, 40, 58, and 31% of Re at the 70-, 35-, 20-, and 7-year-old stands, respectively, and dominated Re during the growing season at the three oldest stands. In contrast, Rs was the dominant Re component at the youngest stand and during the winter months at all four sites. Annually Rs accounted for 44, 40, 29, and 69 % ofRe across the respective TPFS sites. Rw was the smallest component of annual Re, accounting for only 9, 15, 13 and 0.1 % ofRe, respectively. Differences in leaf area indices among the stands were responsible for most ofthe intersite variability in Re, as well as for differences between Re values obtained in this study and those reported in the literature. Results from this study highlight the importance of considering site age and knowledge ofpast land-use history when assessing carbon budgets of afforested or planted ecosystems. They also suggest that Rf may be the more dominant and determinant component ofRe in young to mature afforested stands, which is in contrast to the widely reported Rs dominance of Re in forest ecosystems. </p> <p> Soil respiration was studied in detail across TPFS, as part ofthis dissertation, to determine the driving factors ofits temporal variability, considering seasonal, interannual (3 years ofmeasurements) and decadal (over the TPFS age-sequence) timescales. The range ofRs values across TPFS over the course of three study years was 539 ± 31 to 732 ± 31 g C m^(-2) yr^(-1). In general, annual soil emissions from the oldest stand were higher compared to those from the youngest two stands. However, emissions from the 35-year-old stand were comparable to those from the 20-and 7-year-old stands. Intersite differences in soil emissions were driven mostly by stand physiology, while interannual differences relfected interannual variability in climatic factors, as well as differences in stand physiology that modified the site's microclimates. In particular, results from this study suggest that soil moisture may have a larger effect on the heterotrophic rather than on the rhizospheric component of soil respiration in these forest ecosystems, supporting evidence from other literaturereported studies. Finally, the chamber-based Re values derived in this study were compared with Re values derived from congruent eddy covariance measurements at TPFS. Based on annual totals, Re calculated from chamber measurements overestimated Re calculated from eddy covariance measurements on average by: 18, 75, 24 and 39% at the 70-, 35-, 20-, and 7-year-old stands, respectively. These results highlight the continued need to resolve the discrepancy between the two methodologies used to estimate Re, before measurements from both methods can be used together to make conclusions about the composition of forest carbon budgets. <p> As part of this dissertation, a statistical method of data analysis was used to implement temporal flexibility in the conventional Q10 model, widely used to simulate various Re components of forested ecosystems. The outcome of that analysis highlighted two things: a) for the case of soil respiration, the exponential relationship between Rs and Ts may be limited to the so called "ecologically optimum Ts range" for fine root growth; b) the functional form of the Q10 model is inadequate for simulating the Rs-Ts relationship across a wide range ofTs values, even after the implementation of temporal flexibility into the model, which allowed both of its model parameters to vary. The consequence of the latter result led to the development of a new empirical model -the Gamma model -for use in simulating respiration with temperature. The statistical method and the new emprical model were used to simulate CO2 emissions in this study and to identify additional environmental and physiological factors that explained some of the variability in the individual Re components across TPFS. Thus, temperature was found to be the dominant controlling factor of respiration at all four sites. However, occurrence of precipitation events, vapour pressure deficit, photosynthetically active radiation, the thickness ofthe LFH soil horizon (i.e. litter layer), and soil nutrients, were also shown to explain some ofthe variability ofthe various respiratory components. </p> <p> This dissertation fills some of the gaps in literature on studies of Re component fluxes ofplanted young to mature forests, especially of those growning in the temperate climate of eastern North America, where afforestation and plantations are most likely to occur. The study should be of interest to carbon cycle modellers, field ecologists, the eddy covariance community. It should also be of interest to those involved in forest carbon accounting, management, and policy development, by adding knowledge to our understanding of global carbon cycling and the potential for using afforested sites in global warming mitigation attempts. </p> / Thesis / Doctor of Philosophy (PhD)
104

Effets d’un réchauffement artificiel sur la respiration des sols d’une érablière des Laurentides

Laberge, Sharlène 05 1900 (has links)
La respiration du sol (Rs) en milieu forestier est influencée par les conditions hydroclimatiques du sol ainsi que par la composition en espèces et la qualité de la litière. La hausse des températures et les changements dans les patrons de précipitation, attendus en contexte de changements climatiques, ont donc un fort potentiel de modifier Rs et ainsi, la concentration de CO2 atmosphérique. En ce sens, ce projet de recherche visait tout d’abord à étudier l’effet d’un réchauffement et d’un assèchement artificiels des sols sur Rs, puis à évaluer si la réponse des sols au chauffage allait varier selon le type de couvert forestier. Nous avons échantillonné le flux gazeux des sols sur deux ans dans trois peuplements d'une forêt tempérée décidue à sa limite nordique. Les résultats ont démontré une faible accentuation de Rs en réponse au chauffage, mais seulement jusqu’à un seuil de température du sol d’environ 15°C à partir duquel l’effet positif du chauffage s’estompe, voire s’inverse. Cependant, cette tendance n’était pas systématique puisque les trois peuplements ont démontré une sensibilité différente au chauffage, l’érablière à hêtre étant beaucoup plus sensible que la forêt mixte et l’érablière à bouleau. Ce qui était toutefois commun aux trois peuplements, c’est l’affaiblissement de l’influence de la température sur Rs passé le seuil de 15°C. Outre la température du sol, l’intégration d’autres variables, comme la teneur en eau, l’activité ionique en N, P et Ca de la solution de sol et la présence de conifères au modèle cherchant à expliquer la variabilité de Rs, n’a pas augmenté la puissance explicative du modèle, et ce pour aucun des traitements ou des peuplements. Les résultats de cette étude suggèrent néanmoins un élément intéressant, soit le plafonnement potentiel de Rs malgré la hausse des températures. Ceci apporte un questionnement quant à la magnitude de la rétroaction positive entre le cycle du carbone terrestre et le système climatique. / Forest soil respiration (Rs) is driven by soil hydroclimatic conditions as well as species composition and litter quality. Rising temperatures and changes in precipitation patterns, expected in the context of climate change, therefore have a strong potential to modify Rs and thus the concentration of atmospheric CO2. This research aimed to study the effect of artificial heating and drying of soils on Rs, and to assess whether the response of soils to heating would vary according to the type of forest cover. We sampled soil gas flux over two years in three stands of a temperate deciduous forest at its northern edge. The results demonstrated a weak accentuation of Rs in response to heating, but only up to a soil temperature threshold of about 15°C, where the positive heating effect decreases or is even reversed. However, this trend was not systematic since the three stands demonstrated a different sensitivity to heating, the maple-beech forest being much more sensitive than the mixed forest and the maple-birch forest. Yet, what was common to the three stands was the decrease of the influence of temperature on Rs above the threshold of 15°C. In addition to soil temperature, the integration of other variables, such as water content, ionic activity in N, P and Ca of the soil solution and the presence of conifers in the model seeking to explain the variability of Rs, did not increase the explanatory power of the model for any of the treatments or stands. The results of this study highlight a potential capping of Rs despite the increase in temperatures. They bring questions regarding the magnitude of the positive feedback between the terrestrial carbon cycle and the climate system.
105

Greenhouse Gas Fluxes of Soil in a Miscanthus x giganteus Crop Grown for Cellulosic Bioenergy on Abandoned Agricultural Land

Rodjom, Abbey M. 04 June 2018 (has links)
No description available.
106

Belowground Carbon Processes in Managed Oak-Hickory Forests of Southeastern Ohio

McCarthy, Dawn R. 29 December 2008 (has links)
No description available.
107

Soil respiration in a fire scar chronosequence of Canadian boreal jack pine forest

Smith, Daniel Robert January 2009 (has links)
This research investigates soil respiration (Rs) in a boreal jack pine (Pinus banksiana Lamb.) fire scar chronosequence at Sharpsand Creek, Ontario, Canada. During two field campaigns in 2006 and 2007, Rs was measured in a chronosequence of fire scars in the range 0 to 59 years since fire. Mean Rs adjusted for soil temperature (Ts) and soil moisture (Ms) (Rs T,M) ranged from 0.56 μmol CO2/m2/s (32 years post fire) to 8.18 μmol CO2/m2/s (58 years post fire). Coefficient of variation (CV) of Rs adjusted for Ts and Ms ranged from 20% (16 years post fire) to 56% (58 years post fire). Across the field site, there was a significant exponential relationship between Rs adjusted for soil organic carbon (Cs) and Ts (P = 1.24*10-06; Q10 = 2.21) but no effect of Ms on Rs adjusted for Cs and Ts for the range 0.21 to 0.77 volumetric Ms (P = 0.702). Rs T,M significantly (P = 0.030) decreased after burning mature forest, though no significant (P > 0.1) difference could be detected between recently burned and unburned young forest. Rs was measured in recently burned boreal jack pine fire scar age categories that differed in their burn history and there was a significant difference in Rs T,M between previously 32 v 16 year old (P = 0.000) and previously 32 v 59 year old (P = 0.044) scars. There was a strong significant exponential increase in S R T,M with time since fire (r2 = 0.999; P = 0.006) for the chronosequence 0, 16 and 59 years post fire, and for all these age categories, Rs T,M was significantly different from one another (P < 0.05). The Joint UK Land Environment Simulator (JULES) was used to model vegetation re-growth over successional time at Sharpsand Creek, though it appeared to perform poorly in simulating leaf area index and canopy height. JULES probably over estimated heterotrophic Rs at Sharpsand Creek when Ts corrected simulated values were compared with measured Rs T,M. The results of this study contribute to a better quantitative understanding of Rs in boreal jack pine fire scars and will facilitate improvements in C cycle modelling. Further work is needed in quantifying autotrophic and heterotrophic contributions to soil respiration in jack pine systems, monitoring soil respiration for extended time periods after fire and improving the ability of JULES to simulate successional vegetation re-growth.
108

Is short rotation forestry biomass sustainable?

Zurba, Kamal 27 October 2016 (has links) (PDF)
Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example. In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare. Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF. A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014. Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded. Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available. The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1. The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field. In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle. Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%. Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy.
109

Microbial diversity and activity in temperate forest and grassland ecosystems

Malchair, Sandrine 14 December 2009 (has links)
Ecosystems currently face widespread biodiversity losses and other environmental disturbances, such as climate warming, related to increased anthropogenic activities. Within this context, scientists consider the effects of such changes on the biodiversity, and hence on the activity, of soil microorganisms. Indeed, soil microorganisms mediate a wide range of soil processes. Currently, knowledge on soil microbial diversity is still limited, partially due to technical limitations. The advent of molecular-based analyses now allows studying the soil microbial diversity. These advances in the study of soil microbial communities have lead to a growing evidence of the critical role played by the microbial community in ecosystem functioning. This relationship is supposed to be relevant for narrow processes, regulated by a restricted group of microorganisms, such as the nitrification process. This PhD thesis aimed at studying ammonia oxidizing bacteria (AOB) community structure and richness as an integrated part of soil functioning. This research aimed at investigating the effect of aboveground plant diversity on ammonia oxidizing bacteria diversity and function in forest and grassland soils with focus on the influence of (a) functional group identity of grassland plants (legumes, grasses, forbs), (b) grassland plant species richness and (c) tree species, on AOB diversity and function. Another objective of this research was to study the effect of a 3°C increase in air temperature on AOB diversity and function. The link between AOB diversity and function (potential nitrification) is also investigated. For grassland ecosystems, a microcosm experiment was realized. An experimental platform containing 288 assembled grassland communities was established in Wilrijk (Belgium). Grassland species were grown in 12 sunlit, climate controlled chambers. Each chamber contained 24 communities of variable species richness (S) (9 S=1, 9 S=3 and 6 S=9).The grassland species belonged to three functional groups: three species of each grasses (Dactylis glomerata L., Festuca arundinacea SCHREB., Lolium perenne L.), forbs (non-N-fixing dicots; Bellis perennis L., Rumex acetosa L., Plantagolanceolata L.), and legumes (N-fixing dicots; Trifolium repens L., Medicago sativa L., Lotus corniculatus L.). Half of these chambers were exposed to ambient temperature and the other half were exposed to (ambient +3°C) temperature. One ambient and one (ambient+3°C) chambers were destructively harvested 4, 16 and 28 months after the start of the experiment. The influence of plant functional group identity on the nitrification process and on AOB community structure and richness (AOB diversity) was assessed in soils collected from the first two destructive amplings (chapter 2). The effect of plant species richness on AOB diversity and function was considered for soils sampled after 16 and 28 months (chapter 3). AOB function was determined by potential nitrification. AOB community structure and richness were assessed by polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands. I found that functional group identity can affect AOB community structure. In particular, the presence of legumes, both in monoculture or in mixture with forbs and grasses, lead to AOB community composition changes towards AOB clusters tolerating higher ammonium concentrations. This change in AOB community structure was only linked to increased potential nitrification under monocultures of legumes, when ammonium was supposed to be not limiting. This study revealed that physiological attributes of AOB and resource availability may be important factors in controlling the nitrification process. This research showed that the impact of plant species richness on the nitrification process could be mediated by the interactions between plants and AOB, through competition for substrate. A 3°C increase in air temperature did not affect AOB community structure, richness or function. In forest ecosystems, we studied the effect of tree species in forest sites located in Belgian and in the Grand-Duchy of Luxembourg covered each by several deciduous or coniferous tree species (Fagus sylvatica L., Quercus petraea (Mattuschka) Lieblein, Picea abies (L.) Karst, Pseudotsuga menziesii (Mirbel) Franco). We investigated the influence of these tree species on microbial processes (chapter 5) related to C and N cycling, particularly with emphasize on the nitrification process and on the diversity of AOB (chapter 6). The results showed that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Influence of tree species on nitrification (potential and relative) might be related to the presence of ground vegetation through its influence on soil ammonium and labile C availability. AOB community structure was more site-specific than tree specific. However, within sites, AOB community structure under broadleaved trees differed from the one under coniferous trees. The effect on tree species on AOB was likely to be driven by the influence of tree species on net N mineralization, which regulates the substrate availability for AOB. The results also demonstrated that the relationship between AOB diversity and function might be related both to AOB abundance and AOB community structure and richness. This thesis showed no clear relationship between AOB community structure or richness and AOB function. However, we revealed that aboveground grassland plant richness, grassland plant functional groups and tree species influence AOB community structure and richness. Actuellement, les écosystèmes sont soumis à dimportantes pressions anthropiques et environnementales, pouvant aboutir à des pertes massives de biodiversité. Les scientifiques sinterrogent sur limpact de ces perturbations sur la diversité et, par conséquent, sur lactivité des microorganismes du sol. En effet, ceux-ci régulent de nombreux processus du sol. Actuellement, de nombreuses lacunes subsistent dans la connaissance de la diversité microbienne du sol. Celles-ci peuvent être partiellement attribuées aux difficultés méthodologiques associées à l'étude des micro-organismes du sol. Lavènement des techniques moléculaires nous permet de combler ces lacunes. Les avancées réalisées dans l'étude des communautés microbiennes du sol ont mis en évidence le rôle crucial joué par les communautés microbiennes dans le fonctionnement des écosystèmes. De plus, il semblerait que les processus régulés par un groupe restreint dorganismes, tel le processus de nitrification, soient plus sensibles à toute altération de la communauté. Lobjectif de cette thèse était détudier la structure de la communauté ainsi que la richesse (nombre de bandes DGGE) des bactéries oxydant lammoniac (AOB) comme une partie intégrante du fonctionnement des sols. Notre étude se focalisait sur linfluence de (a) différents groupes fonctionnels de plantes (graminées, légumineuses, dicotylédones), (b) communautés de plantes présentant une richesse spécifique croissante et (c) différentes essences forestières, sur la diversité (structure de la communauté et richesse des AOB) et la fonction des AOB. Cette recherche étudiait également limpact dune augmentation de température de 3°C sur ces paramètres. Létablissement dun lien éventuel entre la diversité et la fonction (nitrification potentielle) des AOB a aussi été envisagé. Concernant les écosystèmes prairiaux, nous avons réalisé une étude en microcosmes. Une plateforme expérimentale comprenant 288 communautés artificielles de plantes a été établie à Wilrijk (Belgique). Cette plateforme consistait en 12 chambres, dont une moitié était à température ambiante et la seconde était à température ambiante augmentée de 3°C. Chaque chambre contient 24 communautés de plantes de richesse spécifique variable (9 S=1, 9 S=3 et 6 S=9). Les communautés de plantes sont créées avec 9 espèces de plantes appartenant à trois groupes fonctionnels : 3 espèces de graminées (Dactylis glomerata L., Festuca arundinacea SCHREB., Lolium perenne L.), de légumineuses (dicotylédones fixatrices dazote ;Trifolim repens L., Medicago sativa L., Lotus corniculatus L.), et de dicotylédones non fixatrices dazote (Bellis perennis L., Rumex acetosa L., Plantago lanceolata L.). Les sols issus dune chambre à température ambiante et dune chambre à température ambiante augmentée de 3°C ont été échantillonnés, respectivement, 4, 16 et 28 mois après le début de lexpérimentation. Linfluence des groupes fonctionnels de plantes sur le processus de nitrification ainsi que sur la structure de la communauté et la richesse des AOB a été mesuré sur les sols issus des deux premiers échantillonnages (chapitre 2). Nous avons mesuré leffet de la richesse croissante en plantes sur la diversité et lactivité des AOB sur les sols échantillonnés après 16 et 28 mois dexpérimentation (chapitre 3). La structure de la communauté ainsi que la richesse des AOB ont été évaluées à laide dune amplification spécifique par réaction de polymérisation en chaîne (PCR) de lADN génomique extrait du sol suivie par une séparation par électrophorèse sur gel dacrylamide en présence dun gradient dénaturant (DGGE). Nous avons identifié les différentes AOB présentes par séquençage des bandes DGGE excisées. Nos résultats ont montré que les différents groupes fonctionnels peuvent affecter la structure de la communauté des AOB. En particulier, la présence de légumineuses, aussi bien en monoculture quen mélange avec des graminées ou des dicotylédones non fixatrices dazote, provoque des changements au sein de la structure de la communauté des AOB, favorisant la présence de clusters tolérants des concentrations en ammonium plus élevées. Ces changements de la structure de la communauté des AOB sont liés à des augmentations de la production potentielle de nitrates (nitrification potentielle) quand lammonium est supposé être non limitant. Cette étude révèle que la physiologie des AOB ainsi que la disponibilité en substrat peuvent être des facteurs majeurs intervenant dans le contrôle du processus de nitrification. Cette recherche montre que linfluence de la richesse spécifique des plantes sur la nitrification pourrait dépendre des interactions entre les plantes et les AOB via la compétition pour le substrat. Une augmentation de la température de lair de 3°C na pas influencé les richesse, structure de la communauté ou les fonctions des AOB. Pour les écosystèmes forestiers, nous aborderons leffet de différentes essences forestières (Picea abies (L.) KARST, Fagus sylvatica L., Quercus petraea LIEBLEIN ; Pseudotsuga menziezii (MIRB.) FRANCO) dans différents peuplements au Grand Duché du Luxembourg et en Belgique. Nous avons étudié l'influence de ces essences forestières sur les processus microbiens (chapitre 5) liés aux cycles du carbone et de lazote, en particulier leur effet sur le processus de nitrification et la diversité des AOB (chapitre 6). Notre étude révèle que linfluence des essences forestières sur la minéralisation nette de lazote pourrait être attribuable à leur effet sur la biomasse microbienne, reflétant ainsi leur effet sur la teneur en matière organique et la disponibilité en carbone. Limpact des essences forestières sur la nitrification (à la fois sur la nitrification relative et sur la nitrification potentielle) serait conditionné par la présence de végétation au sol, en raison de linfluence de celle-ci sur la disponibilité en ammonium et en carbone labile. Nous avons observé que la structure de la communauté des AOB était plus spécifique aux sites quaux essences forestières. Cependant, au sein dun site, elle différait sous feuillus et sous conifères. Les essences forestières influenceraient la structure de la communauté des AOB au travers de limpact quelles ont sur la minéralisation nette de lazote qui régule, quant à elle, la disponibilité en ammonium. Cette recherche démontre que le lien observé entre la diversité et la fonction dépendrait la fois de labondance, de la structure de la communauté et de la richesse des AOB. Cette thèse na révélé aucune relation claire entre la structure de la communauté ou la richesse des AOB et leur fonction. Par contre, nous avons observé que la richesse spécifique et les groupes fonctionnels de plantes prairiales et les essences forestières affectent la structure de la communauté et la richesse des AOB.
110

Soil Chemical and Microbial Properties in a Mixed Stand of Spruce and Birch in the Ore Mountains (Germany) - A Case Study

Schua, Karoline, Wende, Stefan, Wagner, Sven, Feger, Karl-Heinz 27 July 2015 (has links) (PDF)
A major argument for incorporating deciduous tree species in coniferous forest stands is their role in the amelioration and stabilisation of biogeochemical cycles. Current forest management strategies in central Europe aim to increase the area of mixed stands. In order to formulate statements about the ecological effects of mixtures, studies at the stand level are necessary. In a mixed stand of Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) in the Ore Mountains (Saxony, Germany), the effects of these two tree species on chemical and microbial parameters in the topsoil were studied at one site in the form of a case study. Samples were taken from the O layer and A horizon in areas of the stand influenced by either birch, spruce or a mixture of birch and spruce. The microbial biomass, basal respiration, metabolic quotient, pH-value and the C and N contents and stocks were analysed in the horizons Of, Oh and A. Significantly higher contents of microbial N were observed in the Of and Oh horizons in the birch and in the spruce-birch strata than in the stratum containing only spruce. The same was found with respect to pH-values in the Of horizon and basal respiration in the Oh horizon. Compared to the spruce stratum, in the birch and spruce-birch strata, significantly lower values were found for the contents of organic C and total N in the A horizon. The findings of the case study indicated that single birch trees have significant effects on the chemical and microbial topsoil properties in spruce-dominated stands. Therefore, the admixture of birch in spruce stands may distinctly affect nutrient cycling and may also be relevant for soil carbon sequestration. Further studies of these functional aspects are recommended.

Page generated in 0.9639 seconds