• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 27
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 128
  • 128
  • 55
  • 24
  • 24
  • 22
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The impact of canopy composition on the nutritional statusof an admixed spruce and beech forest at Solling,central Germany / Der Einfluss der Zusammensetzung des Kronenraums auf den Nährstoffstatus eines Fichten-Buchen Mischwalds im Solling

Hojjati, Seyed Mohammad 14 February 2008 (has links)
No description available.
112

Fluxes of carbon and water in a Pinus radiata plantation and a clear-cut, subject to soil water deficit

Arneth, Almut January 1998 (has links)
This thesis investigates the abiotic control of carbon (C) and water vapour fluxes (FCO₂ and E, respectively) in a New Zealand Pinus radiata D. Don plantation and a nearby clearcut. It concentrates on the limitation of these fluxes imposed by growing season soil water deficit. This results from low precipitation (658 mm a⁻¹) in combination with a limited root zone water storage capacity of the very stony soil (> 30% by volume). The thesis analyses results from seven eddy covariance flux measurement campaigns between November 1994 and March 1996. The study site was located in Balmoral Forest, 100 km north-west of Christchurch (42° 52' S, 172° 45' E), in a (in November 1994) 8-year-old stand. One set of measurements was conducted in an adjacent clearcut. Ecosystem flux measurements were accompanied by separate measurements of ground fluxes and of the associated environmental variables. Flux analysis focussed on the underlying processes of assimilation (Ac), canopy stomatal conductance (Gc) and respiration (Reco), using biophysical models coupled to soil water balance and temperature subroutines. Aiming to link time inegrated net ecosystem C (NEP) to tree growth, sequestration in tree biomass (NPP) was quantified by regular measurements of stem diameter using allometric relationships. Average rates of FCO₂ and E were highest in spring (324 mmol m⁻² d⁻¹ and 207 mol m⁻² d⁻¹, respectively) when the abiotic environment was most favourable for Gc and Ac. During summer, fluxes were impeded by the depletion of available soil water (θ) and the co-occurrence of high air saturation deficit (D) and temperature (T) and were equal or smaller than during winter (FCO₂ = 46 mmol m⁻² d⁻¹ in summer and 115 mmol m⁻² d⁻¹ in winter; E = 57 and 47 mol m⁻² d⁻¹, respectively). With increasingly dry soil, fluxes and their associated ratios became predominantly regulated by D rather than quantum irradiance, and on particularly hot days the ecosystem was a net C source. Interannually, forest C and water fluxes increased strongly with rainfall, and the simultaneously reduced D and T. For two succeeding years, the second having 3 % more rain, modelled NEP was 515 and 716 g C m⁻² a⁻¹, Ac 1690 and 1841 g C m⁻² a⁻¹ and Reco 1175 and 1125 g C m⁻² a⁻¹. NEP / E increased in wetter (and cooler) years (1.3 and 1.5 g kg⁻¹), reflecting a relatively larger gain in NEP. Responding mainly to increased rainfall during commonly dry parts of the year (ie summer), and reflecting the otherwise benign maritime climate of New Zealand, NEP during the winter months could exceed NEP during the middle of the notional tree growing season. Annual Ac, NEP, and NPP were strongly linearly related. This relation did not hold during bi-weekly periods when the processes of intermediate C storage were influential. Separate knowledge of tree growth and C fluxes allowed quantification of autotrophic, and heterotrophic respiration (Rhet≈ 0.4 NEP), as well as fine-root turnover (≈0.2 NEP). The ratio of NEP and stem volume growth was conservative (0.24 t C m⁻³) and allows a direct connection to be made between ecosystem carbon fluxes and forest yield tables. In the absence of living roots, the clearcut flux measurements demonstrated the expected limitation of Rhet by soil temperature (Ts) and θ. However, an additional 'pumping effect' was discovered at the open site whereby turbulence increased CO₂ efflux considerably when the soil surface was wet. Accounting for the combined effects of Ts, θ and turbulence, annual Rhet at the clear-cut site (loss to the atmosphere) was »50 % of NEP (C sequestered from the atmosphere) in the nearby forest. Clearly, there is an important contribution of C fluxes during early stages of ecosystem development to the total C sequestered over the lifetime of a plantation.
113

Quantification of Terrestrial CO2 Sources to a Headwater Streamin a Boreal Forest Catchment / Kvantifiering av terrestriellt CO2 till en bäcki ett borealt vattenavrinningsområde

Hultin Eriksson, Elin January 2016 (has links)
Carbon Dioxide (CO2) emissions from streams are a significant component of the global carbon cycle.Terrestrial export of CO2 through runoff is increasingly recognized as a major source of CO2 in boreal headwater streams. However, the spatial and temporal distribution of soil water CO2 within theterrestrial landscape remains poorly quantified, contributing to large uncertainties about the origin of CO2 in headwater streams. The riparian zone (i.e. the area with fine sediments and organic rich soils closest to the stream) is accepted as a main contributor of organic carbon to streams, but its importanceas a source of CO2 is less evident. Here I evaluate the riparian zone as a main source by quantifying the contribution of lateral CO2 export from the riparian and hillslope zones to a headwater stream in a Swedish boreal catchment. Hourly measurements of CO2 concentration, conductivity, soil temperature and water table levels were taken in the riparian zone and the hillslope from June 2014 to October 2015. The riparian zone accounted for 58-89 % (August 2014 and March respectively) of the total terrestrial CO2 export from the slope to the stream. The hillslope, in turn, became a progressively larger source of CO2 to the stream during high flow events. To identify the drivers behind these zone-dependent and seasonal patterns in CO2 export, the CO2 production dissolved in the groundwater (groundwater- absorbed carbon) was estimated by taking the temporarily stored CO2  into account. The highest groundwater-absorbed carbon was observed during April and May (5.0 and 7.1 g C-CO2 m-2 month-1 respectively) which is the period with the highest discharge due to snow melt and the initiation of spring production. As such, conventional methods (gas chambers and the gradient method) may underestimate the soil respiration up to 50% during periods of high flow, as they exclude groundwater-absorbed carbon. CO2 consumption was observed in September 2014 and October 2015 (-0.2 and -0.7 g C-CO2 m-2 month-1 respectively) and may be explained by a major amount of the soil respiration being emitted instead of diluted in the groundwater during periods of low groundwater levels. It can be concludedthat, regardless of season, the riparian zone is a major source of CO2 to the headwater stream. / En signifikant mängd koldioxid (CO2) är lagrad i skog och marken. Marken i barrskogsregionernaförvarar en signifikant mängd CO2 där det partiella trycket av CO2 varierar mellan ~10 000 – 50 000 ppm i jämförelse med atmosfären (400 ppm). Mättnaden av CO2 gör att mycket avdunstar tillbaka till atmosfären. Dock absorberas en del CO2 av grundvattnet; vilket resulterar i en naturlig transport av CO2 vidare till ytvattnen där det kapillära nätverket av bäckar är största recipienten. Det är fortfarande oklart hur transporten av CO2 är distribuerad i ett vattenavrinningsområde vilket medför brister i förståelsen av en viktig processväg som kan komma att spela en större roll i framtidens kolkretslopp på grund av den globala uppvärmningen. Därför är en kvantifiering av olika områdens bidrag av CO2 till bäckarna nödvändig. Två betydande zoner i ett vattenavrinningsområde som troligen bidrar olika är: the riparian zone som är närmast bäcken och består av fina sediment med hög organisk halt och, the hillslope som är resterande område och består av grovkorniga jordar med låg organisk halt. Den förstnämnda misstänks transportera mer CO2 via grundvattnet på grund av dess närhet till bäcken, höga halter av CO2 och höga vattenmättnad men detta är ännu inte verifierat. Jag evaluerar the riparian zone som en viktig källa till CO2 i ett vattenavrinningsområde genom att kvantifiera transporten av CO2 från de två zonerna. För att förklara varför transporten varierar presenterar jag en ny modell (GVR) som beräknar den månatliga fluktuationen av den del av CO2-produktionen som absorberas i grundvattnet i the riparian zone. Mätningar av data utfördes i Västrabäcken, ett mindre vattenavrinningsområde i ett större vid namn Krycklan, i norra Sverige. En transekt av tre mätstationer (i bäcken, the riparian zone och the hillslope) installerades i den förmodade grundvattenströmningsriktningen. Resultaten visar på en hög produktion av CO2 under vårfloden (maj) då en hög grundvattenyta troligen absorberar en signifikant mängd CO2. Detta kan betyda att jordrespiration under våren underskattas då dagens mätmetoder är begränsade till mätningar i jorden av CO2 ovan grundvattenytan. Fortsatta studier rekommenderas där GVR-modellen och andra mätmetoder utförs samtidigt för att vidare utröna den kvantitativa underskattningen under perioder med hög grundvattenyta (speciellt under våren). Bidraget från the riparian zone till den totala laterala transporten av CO2 till bäcken under ett år varierar mellan 58-89 % och det månatliga transportmönstret kunde förklaras med resultaten från GVR-modellen. Resultaten verifierar att oberoende av säsong så är the riparian zone den huvudsakliga laterala koltransporten från landvegetationen; medan the hillslope procentuellt bidrar med mer CO2 under höga grundvattenflöden.
114

Is short rotation forestry biomass sustainable?

Zurba, Kamal 12 October 2016 (has links)
Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example. In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare. Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF. A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014. Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded. Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available. The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1. The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field. In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle. Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%. Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy.:Table of Contents Acknowledgements VI Abstract VII List of Figures IX List of Tables XI List of Appendix Tables XII List of Abbreviations XIII List of Abbreviations ...continued XIV 1. Background 1 1.1. General introduction 1 1.2. Soil organic carbon (SOC) 2 1.3. Soil respiration 4 1.4. Energy and bioenergy crops 5 1.5. Willow and poplar short rotation forestry 8 1.6. Degraded lands 10 1.8. Challenges 17 1.9. Objectives of this study 18 2. Methodology 19 2.1. Site Description 19 2.2. Environmental variables 22 2.3. Measuring CO2 emissions 23 2.3.1. Soil emission of CO2 23 2.3.2. Sensitivity of soil respiration to temperature (Q10) 25 2.4. Willow and poplar leaf traits 26 2.4.1. Measuring leaf area 26 2.4.2. Leaf Area Index (LAI) 27 2.4.3. Leaf sensitivity to high and low temperatures 28 2.5. Soil characteristics 30 2.5.1. Soil sampling 30 2.5.2. Soil Moisture Content % (SMC) by gravimetric method 31 2.5.3. Soil pH 31 2.5.4. Soil Cation Exchange Capacity (CEC) 31 2.5.5. Soil content of C, N, S, heavy metals and trace elements 31 2.5.6. Soil porosity 31 2.5.7. Soil pore water 32 2.5.8. Soil hydraulic conductivity (Kf) 32 2.6. Soil-column experiment 34 2.6.1. Experiment set-up 35 2.6.2. Distribution coefficients (Kd) 35 2.7. MICMAC approach 36 2.7.1. Selection of variables 36 2.7.2. Description of direct relationships 36 2.7.3. Classification of variables 37 2.8. Impacts of land-use change on the ecosystem quality 38 2.9. Computer software 40 3. Results and Discussion 41 3.1. Environmental conditions 41 3.1.1. Photosynthetically active radiation (PAR) 41 3.1.2. Soil temperature 42 3.1.3. Soil moisture content 43 3.2. Soil emission of CO2 46 3.2.1. CO2 emission from soil at the short rotation forestry site 46 3.2.2. Soil emission of CO2 during the day and the night 48 3.2.3. Cumulative emission of CO2 49 3.2.4. Comparison with other bioenergy crops 50 3.3. Q10 52 3.4. Willow and poplar Leaf Characteristics 54 3.4.1. Leaf Area Index (LAI) 54 3.4.2. Specific leaf area (SLA) 56 3.4.3. Leaf sensitivity to temperature 57 3.5. Correlations of soil CO2 emission with soil temperature and moisture content 59 3.6. Correlations of soil CO2 emission with plant parameters 65 3.7. Insights into soil respiration and combustion heat per area 67 3.7.1. Cumulative seasonal CO2 emission (CE) 68 3.7.2. Output energy 69 3.7.3. CO2(soil respiration) / Energy ratio 70 3.7.4. Global-warming potential (GWP) 72 3.8. Trace elements in soil 73 3.8.1. Solid-liquid partition coefficients (Kd) 74 3.8.2. Estimating time of remediation 78 3.9. Identification and Prioritization of Key Parameters for Willow and Poplar Short Rotation Forestry (SRF) Production System 82 3.9.1. Based on direct influence/dependence map: 85 3.9.2. Based on indirect influence/dependence map: 87 3.10. Impacts of Land-use Change on the Ecosystem Quality 93 4. Conclusions and Recommendations 101 5. References 102 Appendix 118
115

Analyse von Bodenentgasungen in Sachsen mit Kammersystemen

Oertel, Cornelius 01 February 2017 (has links)
Böden sind Quelle und Senke für klimarelevante Spurengase (CO2, CH4 und N2O). Die freigesetzten Mengen sind mit denen aus Verbrennung fossiler Rohstoffe vergleichbar und können diese übersteigen, sodass Böden das Klima beeinflussen. Die wichtigsten Einflussgrößen der Bodenentgasung sind Vegetation, Bodenbearbeitung, Bodenfeuchte und Bodentemperatur. In dieser Arbeit wurden CO2-Flüsse für Acker-, Grünland- und Waldböden in Sachsen ganzjährig erfasst und eine Regionalisierung für die Landesfläche durchgeführt. Die Methodik umfasste flächendeckende Kurzeitfeldmessungen, punktuelle Langzeitfeldmessungen sowie gezielte Laborversuche. Zur Realisierung wurden robuste, transportable und präzise Kammersysteme zur manuellen und automatisierten Messung der Bodenentgasung im Freiland und Labor entwickelt. Für die Berechnung der Ökosystematmung aus den Messwerten konnte eine empirische Formel erstellt werden. Aus den Analyseergebnissen wurde raumzeitlich strukturiertes Kartenmaterial für die Ökosystematmung im Freistaat Sachsen in den verschiedenen Ökosystemen erstellt.:1 Einleitung 2 Aktueller Wissensstand 2.1 Bedeutung der Thematik 2.2 Treibhausgasemissionen 2.3 Entstehung von Treibhausgasen im Boden 2.4 Einflussgrößen auf die Bodenentgasung 2.5 Messmethoden 2.6 Methodenvergleich 3 Entwicklung von Probenahmesystemen 3.1 Manuelles System 3.2 Automatisierte Systeme 3.3 Berechnungsmethode 4 Versuchsdurchführung 4.1 Auswahl der Messstandorte 4.2 Untersuchungsgebiet 4.3 Meteorologische Daten 4.4 Experimentalarbeiten 4.5 Hochrechnung der Punktmessungen auf die Fläche 4.6 Fehlerbetrachtung 5 Ergebnisse und Diskussion 5.1 Labormessungen in der Klimakammer 5.2 Freilandmessungen – landwirtschaftliche Flächen 2012 5.3 Dauermessung mit SEACH-FG in Hilbersdorf 5.4 Pilotmessungen auf teilversiegelten Flächen und Stadtböden 5.5 Empirische Formel zur Ermittlung der Ökosystematmung 5.6 Hochrechnung der Bodenentgasung für Sachsen 5.7 Ökosystematmung der Bodengroßlandschaften 5.8 Ökosystematmung verschiedener Höhenlagen 6 Entwurf eines Monitoringkonzepts für Sachsen 7 Ausblick 8 Zusammenfassung
116

A Paleoclimate Modeling Experiment to Calculate the Soil Carbon Respiration Flux for the Paleocene-Eocene Thermal Maximum

Tracy, David M 01 January 2012 (has links) (PDF)
The Paleocene-Eocene Thermal Maximum (PETM) (55 million years ago) stands as the largest in a series of extreme warming (hyperthermal) climatic events, which are analogous to the modern day increase in greenhouse gas concentrations. Orbitally triggered (Lourens et al., 2005, Galeotti et al., 2010), the PETM is marked by a large (-3‰) carbon isotope excursion (CIE). Hypothesized to be methane driven, Zeebe et al., (2009) noted that a methane based release would only account for 3.5°C of warming. An isotopically heavier carbon, such as that of soil and C3 plants, has the potential to account for the warming and CIE (Zachos et al., 2005). During the early Eocene, high latitude surface temperatures created favorable conditions for the sequestration of terrestrial carbon. A large untapped terrestrial carbon reservoir, such as that within permafrost regions, contains the potential, if degraded, to account for the CIE as well as the global temperature increase observed during the PETM. Using an fully integrated climate model (GENESIS) with fully coupled vegetation model (BIOME4), we show that adequate conditions for permafrost growth and terrestrial carbon sequestration did exist during the lead up to the PETM. By calculating the flux of net primary production (NPP) and soil respiration (Rs), we demonstrate that the biodegradation of permafrost-based carbon reservoirs had the potential to drive the PETM. Furthermore, we show that the natural planetary response to unbalanced carbon reservoirs resulted in the terrestrial sequestration of atmospheric carbon via permafrost regeneration, yielding a vulnerable carbon reservoir for the subsequent hyperthermal.
117

Optimisation des paramètres de carbone de sol dans le modèle CLASSIC à l'aide d'optimisation bayésienne et d'observations

Gauthier, Charles 04 1900 (has links)
Le réservoir de carbone de sol est un élément clé du cycle global du carbone et donc du système climatique. Les sols et le carbone organique qu'ils contiennent constituent le plus grand réservoir de carbone des écosystèmes terrestres. Ce réservoir est également responsable du stockage d'une grande quantité de carbone prélevé de l'atmosphère par les plantes par la photosynthèse. C'est pourquoi les sols sont considérés comme une stratégie de mitigation viable pour réduire la concentration atmosphérique de CO2 dûe aux émissions globales de CO2 d'origine fossile. Malgré son importance, des incertitudes subsistent quant à la taille du réservoir global de carbone organique de sol et à ses dynamiques. Les modèles de biosphère terrestre sont des outils essentiels pour quantifier et étudier la dynamique du carbone organique de sol. Ces modèles simulent les processus biophysiques et biogéochimiques au sein des écosystèmes et peuvent également simuler le comportement futur du réservoir de carbone organique de sol en utilisant des forçages météorologiques appropriés. Cependant, de grandes incertitudes dans les projections faite par les modèles de biosphère terrestre sur les dynamiques du carbone organique de sol ont été observées, en partie dues au problème de l'équifinalité. Afin d'améliorer notre compréhension de la dynamique du carbone organique de sol, cette recherche visait à optimiser les paramètres du schéma de carbone de sol contenu dans le modèle de schéma canadien de surface terrestre incluant les cycles biogéochimiques (CLASSIC), afin de parvenir à une meilleure représentation de la dynamique du carbone organique de sol. Une analyse de sensibilité globale a été réalisée pour identifier lesquels parmis les 16 paramètres du schéma de carbone de sol, n'affectaient pas la simulation du carbone organique de sol et de la respiration du sol. L'analyse de sensibilité a utilisé trois sites de covariance des turbulences afin de représenter différentes conditions climatiques simulées par le schéma de carbone de sol et d'économiser le coût calculatoire de l'analyse. L'analyse de sensibilité a démontré que certains paramètres du schéma de carbone de sol ne contribuent pas à la variance des simulations du carbone organique de sol et de la respiration du sol. Ce résultat a permis de réduire la dimensionnalité du problème d'optimisation. Ensuite, quatre scénarios d'optimisation ont été élaborés sur la base de l'analyse de sensibilité, chacun utilisant un ensemble de paramètres. Deux fonctions coûts ont été utilisées pour l'optimisation de chacun des scénarios. L'optimisation a également démontré que la fonction coût utilisée avait un impact sur les ensembles de paramètres optimisés. Les ensembles de paramètres obtenus à partir des différents scénarios et fonctions coûts ont été comparés à des ensembles de données indépendants et à des estimations globales du carbone organique de sol à l'aide de métrique tel la racine de l'erreur quadratique moyenne et le bias, afin d'évaluer l'effet des ensembles de paramètres sur les simulations effectuées par le schéma de carbone de sol. Un ensemble de paramètres a surpassé les autres ensembles de paramètres optimisés ainsi que le paramétrage par défaut du modèle. Ce résultat a indiqué que la structure d'optimisation était en mesure de produire un ensemble de paramètres qui simulait des valeurs de carbone organique de sol et de respiration du sol qui étaient plus près des valeurs observées que le modèle CLASSIC par défaut, améliorant la représentation de la dynamique du carbone du sol. Cet ensemble de paramètres optimisés a ensuite été utilisé pour effectuer des simulations futures (2015-2100) de la dynamique du carbone organique de sol afin d'évaluer son impact sur les projections de CLASSIC. Les simulations futures ont montré que l'ensemble de paramètres optimisés simulait une quantité de carbone organique de sol 62 % plus élevée que l'ensemble de paramètres par défaut tout en simulant des flux de respiration du sol similaires. Les simulations futures ont également montré que les ensembles de paramètres optimisés et par défaut prévoyaient que le réservoir de carbone organique de sol demeurerait un puits de carbone net d'ici 2100 avec des sources nettes régionales. Cette étude a amélioré globalement la représentation de la dynamique du carbone organique de sol dans le schéma de carbone de sol de CLASSIC en fournissant un ensemble de paramètres optimisés. Cet ensemble de paramètres devrait permettre d'améliorer notre compréhension de la dynamique du carbone du sol. / The soil carbon pool is a vital component of the global carbon cycle and, therefore, the climate system. Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems. This pool stores a large quantity of carbon that plants have removed from the atmosphere through photosynthesis. Because of this, soils are considered a viable climate change mitigation strategy to lower the global atmospheric CO2 concentration that is presently being driven higher by anthropogenic fossil CO2 emissions. Despite its importance, there are still considerable uncertainties around the size of the global SOC pool and its response to changing climate. Terrestrial biosphere models (TBM) simulate the biogeochemical processes within ecosystems and are critical tools to quantify and study SOC dynamics. These models can also simulate the future behavior of SOC if carefully applied and given the proper meteorological forcings. However, TBM predictions of SOC dynamics have high uncertainties due in part to equifinality. To improve our understanding of SOC dynamics, this research optimized the parameters of the soil carbon scheme contained within the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC), to better represent SOC dynamics. A global sensitivity analysis was performed to identify which of the 16 parameters of the soil carbon scheme did not affect simulated SOC stocks and soil respiration (Rsoil). The sensitivity analysis used observations from three eddy covariance sites for computational efficiency and to encapsulate the climate represented by the global soil carbon scheme. The sensitivity analysis revealed that some parameters of the soil carbon scheme did not contribute to the variance of simulated SOC and Rsoil. These parameters were excluded from the optimization which helped reduce the dimensionality of the optimization problem. Then, four optimization scenarios were created based on the sensitivity analysis, each using a different set of parameters to assess the impact the number of parameters included had on the optimization. Two different loss functions were used in the optimization to assess the impact of accounting for observational error. Comparing the optimal parameters between the optimizations performed using the different loss functions showed that the loss functions impacted the optimized parameter sets. To determine which optimized parameter set obtained by each loss function was most skillful, they were compared to independent data sets and global estimates of SOC, which were not used in the optimization using comparison metrics based on root-mean-square-deviation and bias. This study generated an optimal parameter set that outperformed the default parameterization of the model. This optimal parameter set was then applied in future simulations of SOC dynamics to assess its impact upon CLASSIC's future projections. These future simulations showed that the optimal parameter set simulated future global SOC content 62 % higher than the default parameter set while simulating similar Rsoil fluxes. The future simulations also showed that both the optimized and default parameter sets projected that the SOC pool would be a net sink by 2100 with regional net sources, notably tropical regions.
118

Behavioral and ecological consequences of multiple intraguild predators and connections between predators, prey, and ecosystem function

Sitvarin, Michael Ian 25 August 2014 (has links)
No description available.
119

Diversité des arbres, interactions aériennes et souterraines et décomposition des feuilles mortes / Tree diversity, above-below ground interactions and leaf litter decomposition

Jewell, Mark January 2013 (has links)
Résumé : La décomposition des litières végétales a été décrite comme étant la deuxième plus importante fonction écosystémique sur terre, après la productivité primaire. Alors que la photosynthèse fournit les apports énergétiques à la plupart des chaînes alimentaires, la décomposition recycle les nutriments, permet leur utilisation future par d’autres organismes et relargue dans l’atmosphère le carbone fixé photosynthétiquement. Dans un contexte de changement climatique, un grand intérêt est porté sur la décomposition des litières, car il s’agit, à l’échelle globale, de la plus grande source d’émission de CO[indice inférieur 2] dans l’atmosphère. Les taux de décomposition des litières sont principalement déterminés par trois facteurs: les variables climatiques, la structure des communautés de décomposeurs et les propriétés chimiques et physiques de la litière. La structure de la communauté végétale hôte dans laquelle se produit la décomposition et d’où provient la litière peut influencer l’ensemble de ces trois facteurs. Des changements dans la structure de la communauté végétale pourraient donc affecter les futurs taux de décomposition et modifier significativement les dynamiques globales du carbone. Malgré cela, la communauté hôte est rarement prise en compte dans les études sur la décomposition des litières. Des expériences enlèvent souvent la litière de son environnment naturel de décomposition, mesurant la décomposition des litières à partir de monolithes ou de microcosmes en laboratoire, afin de contrôler les variations indésirables des propriétés du sol. Dans ce mémoire, j’étudie les effets de plusieurs propriétés fonctionnelles de la communauté végétale hôte sur les taux de décomposition des litières et leur contribution à la respiration du sol. En utilisant une plantation expérimentale d’arbres qui permet de manipuler la structure de leur communauté, je teste l’effet de l’identité fonctionnelle des arbres, des espèces et de la diversité fonctionnelle, ainsi que des interactions entre décomposeurs et arbres sur ces processus écosystémiques. La décomposition des litières et la respiration du sol sont liées aux propriétés fonctionnelles des plantes. La décomposition des litières est bien prédite par les valeurs moyennes de traits fonctionnels des litières, mais plus faiblement corrélée à la diversité spécifique. D’après mes résultats, le nombre d’espèces en mélange de litières ne constitue pas un facteur important pour la décomposition, à cause des interactions globalement idiosyncratiques entre types de litières. Cependant, l’augmentation conjointe de la diversité fonctionnelle des mélanges d’espèces en litières et de la communauté d’arbres-hôtes accélère les taux de décomposition et la respiration du sol. Les premières phases de décomposition de litières en surface ne sont que faiblement affectées par la diversité des plantes, alors que pour la respiration du sol, qui prend en compte les dernières phases de décomposition de litière et de matière organique du sol, la diversité est la propriété fonctionnelle de plantes qui fournit le meilleur pouvoir de prédiction. De plus, j’ai trouvé que les apports spécifiques de litières à long terme pouvaient créer des conditions qui favorisent la décomposition des litières native et pouvaient modifier l’effet de la diversité des arbres sur la décomposition. J’attribue cet effet aux rétroactions entre la litière et les organismes décomposeurs du sol. Ce travail de recherche fournit une nouvelle perspective sur les effets des changements de structure de communauté forestière sur les processus de décomposition. La compréhension de ces effets est nécessaire pour prédire les taux de décomposition de litières et les dynamiques globales du carbone. // Abstract : The decomposition of plant litter has been described as the second most important ecosystem function for sustaining life on earth, after primary productivity. Whereas photosynthesis provides the energy input for most food chains, decomposition recycles nutrients for future use by other organisms and returns photosynthetically fixed carbon back to the atmosphere. In the context of climate change, litter decomposition is of specific interest because it represents one of the largest sources of CO[subscript 2] to the atmosphere globally. Rates of litter decomposition are largely determined by three factors: climatic variables, the structure of the decomposer community, and the chemical and physical properties of the litter. The structure of the host plant community under which decomposition takes place and from which the litter is derived can influence all three of these factors. Therefore, any systematic changes in plant community structure could affect future decomposition rates and significantly alter global carbon dynamics. Despite this, the host plant community is rarely considered in litter decomposition studies. Experiments often remove litter from its natural decomposition environment, instead measuring decomposition of litter in common garden settings and laboratory microcosms to control for unwanted variation in soil properties. In this thesis I investigate the effect of several functional properties of the host plant community on rates of litter decomposition and its contribution to soil respiration. Using an experimental tree plantation that manipulates tree community structure, I test the effect of tree functional identity, species and functional diversity, and tree-decomposer interactions on these ecosystem processes. Both litter decomposition and soil respiration were related to plant functional properties. Litter decomposition was best predicted by average-values of litter functional traits and was poorly related to species diversity. The number of species in a litter mixture does not seem to be important for decomposition, as interactions between litter types were idiosyncratic. However increasing the functional diversity both of mixed-species litter and of the host tree community accelerated rates of litter decomposition and soil respiration. Early stages of surface litter decomposition were only marginally affected by plant diversity. In contrast, diversity was the best predictor of soil respiration, which includes latter stages of litter and soil organic matter decomposition. Furthermore, I found that specific repeated litter input to the soil can result in conditions that favour the decomposition of the long-term litter type and can mediate the effect of tree diversity on decomposition. I attribute this effect to feedbacks between the litter and soil decomposer organisms. This research provides insight into the effect of changing forest community structure on decomposition processes. Such an understanding is necessary to predict future rates of litter decomposition and global carbon dynamics.
120

Gärprodukte aus Biogasanlagen im pflanzenbaulichen Stoffkreislauf

Wragge, Verena 06 January 2014 (has links)
Biogas im Rahmen einer nachhaltigen Landwirtschaft zu erzeugen bedeutet u. a., die anfallenden Gärprodukte als Dünger zu verwenden, um die Verluste im Nährstoffkreislauf zu minimieren. Die vorliegende Arbeit geht der Frage nach, welche Wirkungen Gärprodukte aus der Biogasproduktion bei der Verwendung als Dünger auf Boden und Pflanzen haben. Die Ergebnisse von Parzellenfeld- und Praxisversuchen, in denen Gärprodukte aus der Mono- und Kofermentation von Energiepflanzen im Vergleich zu N-Mineraldünger untersucht wurden, werden vorgestellt und diskutiert. Zur Beurteilung der Wirkungen auf den Boden wurden bodenchemische und bodenbiologische Parameter herangezogen sowie die Abbaustabilität der organischen Substanz der Gärprodukte gemessen. Zur Untersuchung der Wirkungen auf die Pflanzen wurden verschiedene Wachstums-, Entwicklungs-, Ertrags- und Qualitätsparameter erfasst und ausgewertet. Die Gärprodukte zeichnen sich durch relativ hohe Ammoniumgehalte sowie durch hohe pH-Werte aus. Das Pflanzenwachstum und die Erträge werden durch die Düngung mit Gärprodukten gesteigert, wobei die Wirkung trotz der hohen Ammoniumgehalte deutlich hinter denen des N-Mineraldüngers zurückbleibt. Die berechneten Nährstoffbilanzen weisen auf deutliche Unterschiede zwischen den untersuchten Gärprodukten und Kulturarten, aber auch zwischen den beiden Versuchsjahren hin. Die Ergebnisse zeigen jedoch, dass durch die Verwendung von Gärprodukten als Dünger wichtige Pflanzennährstoffe rezykliert werden können, wodurch der Einsatz von Mineraldüngern reduziert werden kann. Hinsichtlich der Wirkungen von Gärprodukten auf den Boden zeichnen die umfangreichen Analysen ein differenziertes Bild. Die mikrobiologischen Umsetzungsprozesse im Boden werden insbesondere in den ersten Tagen nach der Ausbringung gefördert. Weiterer Forschungsbedarf wird insbesondere hinsichtlich der Wirkungen auf die Bodenmakrofauna aufgezeigt. / Producing biogas in a sustainable agricultural system means using digestates as fertilizers, in order to minimize leaks in nutrient cycles. The aim of this work is to investigate effects on soil and plants after field application of digestates. In this respect, results from plot- and practical fieldexperiments are analyzed to compare digestates from mono- and from co-fermentation of energy crops in comparison to mineral N-fertilizer. Soil chemical and biological effects were assessed on the basis of selected parameters, one of which was the stability of the organic matter applied. Effects on crops have been evaluated by measuring growth, development, yields, and quality of the crops. The digestates have been analyzed and showed especially high amounts of ammonium and a high pH-value. Plant growth and yields increased as a result of fertilization. However, despite high amounts of ammonia present in digestates, fertilizing effects have been much lower compared to mineral N-fertilization. The calculated nutrient balances showed obvious differences between the digestates analyzed, crops, and also between the two experimental years. Generally, the results demonstrate that nutrients can be recycled by using digestates as fertilizers and thus the use of mineral fertilizers can be reduced. The extensive soil analyses presented in this work show diverse results. Microbial metabolic processes in the soil are increased especially during the first few days after digestate application. More research is needed with respect to effects on macro fauna.

Page generated in 0.1504 seconds