• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 22
  • 17
  • 16
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 143
  • 143
  • 54
  • 33
  • 28
  • 21
  • 18
  • 18
  • 17
  • 17
  • 16
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System

Harith, Akila 01 1900 (has links) (PDF)
Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used for solar energy conversion, however, is not cost effective. In addition, solar thermal power systems are also generally less efficient as compared to fossil fuel based thermal power plants. There is a large variety of systems for solar thermal power generation, each with certain advantages and disadvantages. A distinct advantage of solar thermal power generation systems is that they can be easily integrated with a storage system and/or with an auxiliary heating system (as in hybrid power systems) to provide stable and reliable power. Also, as the power block of a solar thermal plant resembles that of a conventional thermal power plant, most of the equipment and technology used is already well defined, and hence does not require major break through research for effective utilisation. Manufacturing of components, too, can be easily indigenized. A solar collector field is generally used for solar thermal energy conversion. The field converts high grade radiation energy to low grade heat energy, which will inevitably involve energy losses as per the laws of thermodynamics. The 2nd law of thermodynamics requires that a certain amount of heat energy cannot be utilised and has to be rejected as waste heat. This limits the efficiency of solar thermal energy technology. However, in many situations, the waste heat can be effectively utilized to perform refrigeration and desalination using absorption or solid sorption systems, with technologies popularly known as “polygeneration”. There is extensive research done in the area of solar collectors, including but not limiting to thermal analysis, testing of solar collectors, and economic analysis of solar collectors. Exergy and optimization analyses have also been done for certain solar collector configurations. Research on solar thermal power plants includes energy analysis at system level with certain configurations. Research containing analysis with insolation varying throughout the day is limited. Hence, there is scope for analysis incorporating diurnal variation of insolation for a solar thermal power system. This thesis centres on the thermodynamic analysis at system level of a solar thermal power system using a concentrating solar collector field and a simple Rankine cycle power generation (with steam as the working fluid) for Indian conditions. The aim is to develop a tool for thermodynamic analysis of solar thermal power systems, with a generalised approach that can also be used with different solar collector types, different heat transfer fluids in the primary loop, and also different working fluids in the secondary loop. This analysis emphasises the solar collector field and a basic sensible heat storage system, and investigates the various energy and exergy losses present. Comparisons have been made with and without a storage unit and resulting performance issues of solar thermal power plants have been studied. Differences between the system under consideration and commercially used thermal power plants have also been discussed, which brought out certain limitations of the technology currently in use. A solution from an optimization analysis has been utilized and modified for maximization of exergy generated at collector field. The analysis has been done with models incorporating equations using the laws of thermodynamics. MATLAB has been used to program and simulate the models. Solar radiation data used is from NREL’s Indian Solar Resource Data, which is obtained using their SUNY model by interpreting satellite imagery. The performance of the system has been analysed for Bangalore for four different days with different daylight durations, each day having certain differences in the incident solar radiation or insolation received. A particular solution of an optimization analysis has been modified using the simulation model developed and analysed with the objective of maximization of exergy generated at collector field. It has been found that the performance of the solar thermal power system was largely dependent on the variation of incident solar radiation. The storage system provided a stableperformance for short duration interruptions of solar radiation occurred on Autumn Equinox (23-09-2002).The duration of the interruption was within the limits of storage unit capacity. The major disruption in insolation transpired on Summer Solstice (21-06-2002) caused a significantly large drop in the solar thermal system performance; practically the system ceased to function due to lack of energy resource. Hence, the use of an auxiliary heating system hasbeen considered desirable. The absence of a storage unit has been shown to cause a significant loss in gross performance of the power system. The Rankine cycle turbine had many issues coping with a highly fluctuating energy input, and thus caused efficiency losses and even ceased power generation. A storage unit has been found to be ideal for steady power generation purposes. Some commercial configurations may lack a storage system, but they have been compensated by the auxiliary heating system to ensure stable power generation. The optimization of the solar collector determines that optimal collector temperatures vary in accordance to the incident solar radiation. Hence, the collector fluid outlet temperature must not be fixed so as to handle varying insolation for optimal exergy extraction. The optimal temperatures determined for Bangalore are around 576 K which is close to the values obtained by the simulation of the solar thermal power system. The tools for analysis and simulation of solar thermal power plants developed in this thesis is fairly generalised, as it can be adapted for various types of solar collectors and for different working fluids (other than steam), such as for Organic Rankine Cycle (ORC). The model can also be easily extended to other types of power cycles such as Brayton and Stirling cycles.
132

Viabilidades t?rmica, econ?mica e de materiais de um sistema solar de aquecimento de ?gua a baixo custo para fins residenciais

Costa, Raimundo Nonato Almeida 01 June 2007 (has links)
Made available in DSpace on 2014-12-17T14:57:40Z (GMT). No. of bitstreams: 1 RaimundoNAC.pdf: 846914 bytes, checksum: 05f5ca2a386c7e7ce11ac1dae42ab71d (MD5) Previous issue date: 2007-06-01 / An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials / Apresenta-se um sistema de aquecimento solar de ?gua, trabalhando em regime de termossif?o, constitu?do por um, coletor solar alternativo e um reservat?rio armazenador de ?gua tamb?m alternativo. O coletor foi constru?do com um material comp?sito a base de gesso e isopor e o reservat?rio t?rmico a partir de um tambor de polietileno de 200 litros utilizado para armazenamento de ?gua e lixo recoberto por um cilindro em fibra de vidro, tendo isopor triturado entre as duas superf?cies. A utiliza??o do comp?sito e a nova forma de obten??o da grade absorvedora permitem que o coletor apresente apenas tr?s elementos ao inv?s dos cinco caracter?sticos de um coletor convencional, diminuindo, portanto o seu custo. A superf?cie absorvedora dos coletores foi montada utilizando-se tubos de PVC pintados de preto fosco, ligados atrav?s de uma configura??o em paralelo, utilizando como elementos de liga??o conex?es em T de PVC de mesmo di?metro. Ser?o apresentados dados de efici?ncia e perda t?rmicas que demonstram a efici?ncia t?rmica do sistema de aquecimento proposto Abordarse-? tamb?m aspectos relativos a susceptibilidade de degrada??o dos tubos de PVC quando expostos a radia??o solar. Mostrar-se-? que tal sistema de aquecimento alternativo, que tem como principal caracter?stica seu baixo custo, apresenta viabilidades t?rmica, econ?mica e de materiais
133

Projeto, constru??o e an?lise de desempenho de coletores solares alternativos utilizando garrafas pet

Santos, Natanaeyfle Randemberg Gomes dos 08 February 2008 (has links)
Made available in DSpace on 2014-12-17T14:57:43Z (GMT). No. of bitstreams: 1 NatanaeyfleRGS.pdf: 3490813 bytes, checksum: f204addb5db220050260ffb91221e262 (MD5) Previous issue date: 2008-02-08 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / A solar alternative system for water heating is presented. It work on a thermosiphon, consisting of one or two alternative collectors and a water storage tank also alternative, whose main purpose is to socialize the use of energy mainly to be used by people of low income. The collectors were built from the use of pets bottles, cans of beer and soft drinks and tubes of PVC, ? " and the thermal reservoirs from a drum of polyethylene used for storage of water and garbage placed inside cylinder of fiber glass and EPS ground between the two surfaces. Such collectors are formed by three elements: pet bottles, cans and tubes absorbers. The heating units, which form the collector contains inside the cans that can be closed, in original form or in the form of plate. The collectors have an absorber grid formed by eight absorbers PVC tube, connected through connections at T of the same material and diameter. It will be presented data of the thermal parameters which demonstrate the efficiency of the heating system proposed. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be demonstrated that this alternative heating system, which has as its main feature low cost, presents thermal, economic and materials viabilities / Apresenta-se um sistema de aquecimento de ?gua solar atrav?s do uso da energia solar, trabalhando em regime de termossif?o, constitu?do por um ou dois coletores, coletores alternativos e um reservat?rio armazenador de ?gua tamb?m alternativo, cuja principal finalidade ? socializar o uso da energia principalmente para ser utilizada por popula??es de baixa renda. Os coletores foram constru?dos a partir da utiliza??o de garrafas pet, latas de cervejas e refrigerantes e tubos de PVC de ? e os reservat?rios t?rmicos a partir de um tambor de polietileno utilizado para armazenamento de ?gua e lixo colocado no interior de cilindro em fibra de vidro, tendo isopor triturado entre as duas superf?cies. Tais coletores s?o formados por apenas tr?s elementos: garrafa pet, latas e tubos absorvedores. As unidades de aquecimento que formam o coletor cont?m em seu interior as latas que podem estar fechadas, vazadas ou em forma de aletas. Os coletores possuem uma grade absorvedora formada por oito tubos absorvedores de PVC, ligados atrav?s de conex?es em T do mesmo material e di?metro. Ser?o apresentados dados de rendimento e perda t?rmicos que demonstram a efici?ncia do sistema de aquecimento proposto Abordar-se-? tamb?m aspectos relativos a susceptibilidade de degrada??o dos tubos de PVC quando expostos a radia??o solar. Mostrar-se-? que tal sistema de aquecimento alternativo, que tem como principal caracter?stica seu baixo custo, apresenta viabilidades t?rmica, econ?mica e de materiais
134

Vyhodnocení solární soustavy VUT Fast / Evaluation of the solar system in VUT Fast

Bublan, Tomáš January 2014 (has links)
The main purpose of the diploma thesis is the evaluation of the solar system at the BUT FCE and the application of the topic on the specified building. The specified building was the story cellarless kindergarten with flat roof. There were proposed two variants of applications of the solar collectors: the solar heating of warm water or combination of solar heating of warm water with the support of heating.
135

Tepelné čerpadlo v trivalentním systému vytápění / Heat pump in multivalent heating system

Šedý, Martin January 2008 (has links)
Thesis deals with the usage of energy from recoverable resources. Theoretical part of thesis includes the description of the utilisation of heating pumps, solar radiation and biomass. The real status of the implementation is described in the second part of the thesis. Last part of the thesis contains the energy and economy valuation of real implementation.
136

Návrh otopného systému pro nízkoenergetický rodinný dům / Design of heating system for low-energy family house

Kytýrová, Zdeňka January 2008 (has links)
This diploma thesis deals with the design of a heating system for a "low-energy" house. It is conceived as a low temperature system using a combination of radiators and underfloor heating. The design is supplemented with a calculation of heat loss, a proposal of needed components, a scheme of the system and means of regulation. The second part solves the heat source selection. A solar system with vacuum tubes is used as the primary source. The second one is an electrical water heater located in the accumulation reservoir for the hot domestic water. Necessary calculations for the design of the solar system, together with a scheme and means of regulation, are enclosed in this section.
137

Návrh solárního ohřevu vody a solárního přitápění v rodinném domě / Design of a solar space and DHW heating system for a detached dwelling

Čukat, Stanislav January 2012 (has links)
The master’s thesis deals with the design of solar assisted space heating and domestic hot water (DHW) heating in a detached single family dwelling. The thesis contains the heating load calculations as well as the calculation of the energy consumption for space and DHW heating. The thesis also contains the actual design and sizing of the heating system including the drawings. A simulation of solar heating was carried out with the use of the TRNSYS simulation tool in order to assess the yield of the solar heating system.
138

Energeticky úsporná budova penzionu v Chlumětíně / Low-energy building of boarding house in Chlumětín

Vtípil, Jan January 2022 (has links)
The master thesis deals with the design of environment friendly boarding house, which is located on a hill in a small village called Chlumětín. There are designed renewable energy sources, such as solar collectors or fotovoltaic panels. The first part deals with the design and layout of the boarding house. On the ground floor is solved, the design of the kitchen according to hygienic requirements, the design of the premises for guests with barrier-free toilets. In the attic are designed guest rooms including barrier-free room. The second part deals with the simplified design of building services. It includes rainwater management, mechanical ventilation with heat recovery, lighting, cooling and heating. The third part deals with the detailed design of heating in the building. It includes design of radiator power, pipe dimension, power of wood-gas boiler, storage tanks, pumps, etc.
139

Development Of Cu2ZnSnS4/ZnS Thin Film Heterojunction Solar Cells By Ultrasonic Spray Pyrolysis

Prabhakar, Tejas 12 1900 (has links) (PDF)
Semiconductors such as CuInGaSe2 and CdTe have been investigated as absorber layer materials for thin film solar cells since their band gap matches with the solar spectrum. Films as thin as 2m are sufficient for the absorption of the visible part of solar radiation, because they are characterized by a high absorption coefficient. However, the scarcity and high costs of Indium, Gallium and Tellurium have led to concerns on the sustainability of these technologies. The semiconductor Cu2ZnSnS4 (Copper Zinc Tin Sulphide) consisting of abundantly available elements promises to be an excellent photovoltaic absorber material. The present study is focused on the growth and characterization of CZTS/ZnS thin film heterostructure suitable for PV applications. Ultrasonic Spray Pyrolysis (USP), a variation of Spray Pyrolysis is a thin film deposition technique where the solution to be sprayed is atomized by ultrasonic frequencies. The details of the USP experimental set up and the deposition principle are presented in the thesis. The active layers of the solar cell, viz. the CZTS absorber layer and ZnS emitter layer were grown by this technique. The metal top contact was deposited using e-beam evaporation. The effects of copper concentration and sodium diffusion on the Cu2ZnSnS4 film properties were investigated. The films have shown preferred orientation along (112) direction confirming kesterite structure. The optical studies revealed that a reduction of copper in the films will bring the band gap energy to 1.5eV, which will match with the solar spectrum. Sodium diffusion in the CZTS films is found to passivate the grain boundaries and enhance the electrical conductivity. These properties render CZTS films as good photovoltaic absorber layers. ZnS has a high band gap and is non toxic unlike CdS. The influences of variation in substrate temperature and spray duration on the ZnS film properties were examined. The optical studies conducted on ZnS films revealed that they are highly transparent in the visible region of the solar spectrum. The films were found to possess a band gap of 3.5 eV. These properties make them potential candidates as solar cell emitter layers. The CZTS/ZnS heterojunction solar cell was fabricated and subjected to electrical characterization in dark and illuminated conditions. A conversion efficiency of 1.16% was achieved for the device.
140

Modeling, Optimization And Design Of A Solar Thermal Energy Transport System For Hybrid Cooking Application

Prasanna, U R 07 1900 (has links) (PDF)
Cooking is an integral part of each and every human being as food is one of the basic necessities for living. Commonly used sources of energy for cooking are firewood, crop residue, cow dung, kerosene, electricity, liquefied petroleum gas(LPG), biogas etc. Half of the world’s population is exposed to indoor air pollution, mainly the result of burning solid fuels for cooking and heating. Wood cut for cooking purpose contributes tothe16 million hectares(above4% of total area of India) of forest destroyed annually. The World Health Organization(WHO) reports that in 23 countries 10% of deaths are due to just two environmental risk factors: unsafe water, including poor sanitation and hygiene; and indoor air pollution due to solid fuel usage for cooking. In under-developed countries, women have to walk 2kms on average and spend significant amount of time for collecting the firewood for cooking. The cooking energy demand in rural areas of developing countries is largely met with bio-fuels such as fuel wood, charcoal, agricultural residues and dung cakes, whereas LPG or electricity is predominantly used in urban areas. India has abandon amount of solar energy in most of the regions making it most ideal place for harvesting solar energy. With almost 300 sunny days each year, one can confidently relay on this source of energy. India’s geographical location is in such a way that theoretically it receives 5x1015 kWh/ year of solar energy. Solar cooking is the simplest, safest, environmental friendly and most convenient way to cook. It is a blessing for those who cook using firewood or cow dung, who walk for miles to collect wood, who suffer from indoor air pollution. Hence solar cooking is going to play major role in solving future energy problem. Solar based cooking has never been a strong contender in the commercial market or even close to being a preferred method of cooking. They have been relegated to demonstration appliances to show case the solar based concepts. In this mode, cooking is no longer a time independent activity that can be performed at any time of day. One is forced to cook only at certain times when there is sufficient insolation. The geography of the cooking activity also shifts away from the kitchen. The kitchen is no longer the hearth of the home as the actual cooking activity shifts to the roof tops or high insolation platforms. This further adds to the inconvenience apart from being unable to cook at night or during cloudy conditions or during most of the winter days. Another issue of significant inconvenience is the general social structure in most families of the developing countries wherein the cooking activity is carried out by the senior ladies of the home. They are generally not athletic enough to be moving to and from the kitchen and the roof top to carry out the cooking exercise. As the solar cookers are enclosed spaces, interactive cooking is not possible let alone having any control on the rate of cooking. These are some of the more significant issues in the social psyche that has abundantly impeded the acceptance of solar thermal based cooking appliances. These issues and problems are in fact the motivating factors for this thesis. Based on these motivating factors, this thesis aims to propose solutions keeping the following points as the major constraints. cooking should be performed in the kitchen. one should be able to perform the cooking activity independent of the time of day or insolation. the cooking activity should be interactive the time taken for cooking should be comparable with the conventional methods in vogue. there should be a reduction in the use of conventional energy. Using the constraints and the motivating factors discussed above as the central theme, this thesis proposes a method to transfer solar thermal energy to the kitchen and act as a supplement to the conventional source of energy like the LPG or other sources that are traditionally being used in the households. The method proposed is in fact a hybrid scenario wherein the solar thermal is used to supplement the traditional source. Solar photovoltaic cells are also used to power the electronics and apparatus proposed in this thesis. This thesis addresses in detail the issues in analysis, modeling, designing and fabrication of the proposed hybrid solar cooking topology. The main goal of the proposed system is to transfer heat from sun to the cooking load that is located in the kitchen. The topology includes an additional feature for storing the energy in a buffer. The heat is first transferred from the solar thermal collector to a heat storage tank(that acts as the buffer) by circulating the heat transfer fluid at a specific flow rate that is controlled by a pump. The stored heat energy that is collected in the buffer is directed into the kitchen by circulating the heat transfer fluid into the heat exchanger, located in the kitchen. This is accomplished by controlling the flow rate using another pump. The solar thermal collector raises the temperature of the thermic fluid. The collector can be of a concentrating type in order to attain high temperatures for cooking. Concentrating collector like linear parabolic collector or parabolic dish collector is used to convert solar energy into heat energy. Absorption of energy from the incident solar insolation is optimized by varying the flow rate of circulating thermic fluid using a pump. This pump is energized from a set of photovoltaic panels(PV cell) which convert solar energy into electrical energy. The energy absorbed from the solar thermal collector is stored in a buffer tank which is thermally insulated. Whenever cooking has to be carried out, the high temperature fluid from the buffer tank is circulated through a heat exchanger that is located in the kitchen. The rate of cooking can be varied by controlling both the flow rate of fluid from the buffer tank to heat exchanger and also by controlling the amount of energy drawn from the auxiliary source. If the available stored energy is not sufficient, the auxiliary source of energy is used for cooking in order to ensure that cooking is in-dependent of time and solar insolation. In the proposed hybrid solar cooking system, the thesis addresses the issues involved in optimization of energy extracted from sun to storage tank and its subsequent transfer from the storage tank to the load. The flow rate at which maximum energy is extracted from sun depends on many parameters. Solar insolation is one of the predominant parameters that affect the optimum flow rate. Insolation at any location varies with time on a daily basis (diurnal variations) and also with day on a yearly basis(seasonal variation). This implies that the flow rate of the fluid has to be varied appropriately to maximize the energy absorbed from sun. In the proposed system, flow rate control plays a very significant role in maximizing the energy transfer from the collector to the load. The flow rate of the thermic fluid in the proposed system is very small on the order of 0.02kg/s. It is very difficult to sense such low flows without disrupting the operating point of the system. Though there are many techniques to measure very low flow rates, they invariably disrupt the system in which flow rate has to be measured. Further, the low flow sensors are far too expensive to be included in the system. A reliable, accurate and inexpensive flow measuring technique has been proposed in this thesis which is non-disruptive and uses a null-deflection technique. The proposed measuring method compensates the pressure drop across the flow meter using a compensating pump. The analysis, modeling, design and fabrication of this novel flow meter are addressed. The design and implementation of different subsystems that involves the selection and design of solar concentrating collector and tracking are explained. Finally, it is essential to know the economic viability of the proposed system that is designed and implemented. To understand the economics, the life cycle cost analysis of the proposed system is presented in this thesis. The major contributions of this thesis are: Energy transport: Major challenge in energy transport is to bring heat energy obtained from the sun to the kitchen for cooking. Energy transferred from solar insolation to the cooking load has to be optimized to maximize the overall efficiency. This can be split in to two parts,(a) optimizing efficiency of energy transferred from the collect or to the energy buffer tank,(b) optimizing efficiency of energy transferred from the buffer tank to the load. The optimization is performed by means of a maximum power point tracking(MPPT) algorithm for a specific performance index. Modeling of the cooking system: There are several domains that exist in the solar cooking system such as electrical domain, thermal domain, and hydraulic domain. The analysis of power/energy flow across all these domains presents a challenging task in developing a model of the hybrid cooking system. A bond graph modeling approach is used for developing the mathematical model of the proposed hybrid cooking system. The power/energy flow across different domains can be seamlessly integrated using the bond graph modeling approach. In this approach, the various physical variables in the multi-domain environment are uniformly de-fined as generalized power variables such as effort and flow. The fundamental principle of conservation of power/energy issued in describing the flow of power/energy across different domains and thus constructing the dynamic model of the cooking system. This model is validated through experimentation and simulation. Flow measurement: A novel method of low fluid mass flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump has been proposed. The pressure drop due to flow is balanced by feedback control loop. This is a null-deflection type of measurement. As insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. This allows the measurement of very low flow rate at very low resolution. Implementation and design of such a unit are discussed. The system is modeled using bond graph technique and then simulated. The flow meter is fabricated and the model is experimentally validated. Design Toolbox: Design of hybrid cooking system involves design of multi domain systems. The design becomes much more complex if the energy source to operate the system is hybrid solar based. The energy budget has to be evaluated considering the worst case conditions for the availability of the solar energy. The design toolbox helps in assessing the user requirement and help designing the cooking system to fulfill the user requirement. A detailed toolbox is proposed to be developed that can be used in designing/selecting sub-systems like collector, concentrator, tracking system, buffer tank, heat exchanger, PV panel, batteries etc. The toolbox can also be used for performing life cycle costing.

Page generated in 0.0933 seconds