• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Colloidal Interactions in Aquatic Environments: Effect of Charge Heterogeneity and Charge Asymmetry

Taboada-Serrano, Patricia Larisse 21 November 2005 (has links)
The classical theory of colloids and surface science has universally been applied in modeling and calculations involving solid-liquid interfaces encountered in natural and engineered environments. However, several discrepancies between the observed behavior of charged solid-liquid interfaces and predictions by classical theory have been reported in the past decades. The hypothesis that the mean-field, pseudo-one-component approximation adopted within the framework of the classical theory is responsible for the differences observed is tested in this work via the application of modeling and experimental techniques at a molecular level. Silica and silicon nitride are selected as model charged solid surfaces, and mixtures of symmetric and asymmetric indifferent and non-indifferent electrolytes are used as liquid phases. Canonical Monte Carlo simulations (CMC) of the electrical double layer (EDL) structure of a discretely charged planar silica surface, embedded in solutions of indifferent electrolytes, reveal the presence of a size exclusion effect that is enhanced at larger values of surface charge densities. That effect translates into an unexpected behavior of the interaction forces between a charged planar surface and a spherical particle. CMC simulations of the electrostatic interactions and calculations of the EDL force between a spherical particle and a planar surface, similarly charged, reveal the presence of two attractive force components: a depletion effect almost at contact and a long-range attractive force of electrostatic origin due to ion-ion correlation effects. Those two-force components result from the consideration of discreteness of charge in the interaction of solid-liquid interfaces, and they contradict the classical theory predictions of electrostatic repulsive interaction between similarly charged surfaces. Direct interaction force measurements between a charged planar surface and a colloidal particle, performed by atomic force microscopy (AFM), reveal that, when indifferent and non-indifferent electrolytes are present in solution, surface charge modification occurs in addition to the effects on the EDL behavior reported for indifferent electrolytes. Non-uniformity and even heterogeneity of surface charge are detected due to the action of non-indifferent, asymmetric electrolytes. The phenomena observed explain the differences between the classical theory predictions and the experimental observations reported in the open literature, validating the hypothesis of this work.
12

Espectroscopia não linear de interfaces aplicada ao estudo de transistores poliméricos / Nonlinear interface spectroscopy applied to the study of polymeric transistors

Motti, Silvia Genaro 20 March 2014 (has links)
O uso de materiais orgânicos em dispositivos eletrônicos, além de menor custo e facilidade de processamento, permite obter flexibilidade e transparência. Entretanto, para que a aplicação comercial desses materiais seja viável, os processos que ocorrem nos dispositivos ainda precisam ser mais bem compreendidos, visando maior eficiência e tempo de vida. É de grande importância o estudo das interfaces entre o semicondutor orgânico e os contatos metálicos, onde ocorre transferência de portadores de carga, e a interface com o dielétrico em transistores orgânicos (OFETs), onde se forma o canal de condução. As interfaces de dispositivos eletrônicos poliméricos foram estudadas, utilizando-se Espectroscopia SFG (do inglês Sum Frequency Generation). Esta técnica obtém um sinal com a soma das frequências de dois feixes incidentes sobrepostos, em um processo seletivo a meios onde não há simetria de inversão, como no caso de interfaces. Com aplicação de um feixe de excitação na região visível e outro sintonizável no infravermelho médio, a espectroscopia SFG fornece um espectro vibracional da interface e permite o estudo do ordenamento e da orientação dos grupos moleculares. Foram construídos e analisados OFETs de poli-3-hexiltiofeno (P3HT) preparados sobre substrato de vidro ou silício, utilizando como isolante óxido de silício e/ou poli-metil-metacrilato (PMMA). Foram obtidos espectros in situ do canal de OFETs em operação, observando pequenas alterações na forma de linha, porém a baixa relação sinal/ruído não permitiu obter conclusões detalhadas. Foi constatada a manifestação de bandas da camada isolante de PMMA como consequência da aplicação de campo elétrico. Este fenômeno foi considerado como uma nova ferramenta para estudar a distribuição de cargas e campo elétrico no canal de transistores. Não foram detectados sinais de degradação irreversível no polímero semicondutor a curto prazo, e a mudança de comportamento elétrico foi atribuída majoritariamente a dopagem por oxigênio absorvido no material. / The usage of organic materials in electronic devices allows not only low cost and ease of processing but also flexibility and transparency. However, to achieve viable commercial application, the processes involved on the devices operation must still be better comprehended, aiming for improved efficiency and life time. There is great importance in the study of the interfaces between organic semiconductors and metallic contacts, where charge transfer takes place, and between the dielectric and semiconductor layers of organic transistors (OFETs), where the conducting channel is formed. The interfaces in polymeric electronic devices were studied by SFG spectroscopy (Sum Frequency Generation). In this technique, a signal with frequency that equals the sum of those of two incident beams is generated in a process only allowed in media without inversion symmetry, such as interfaces. Using a visible excitation beam and a tunable infrared one, SFG spectroscopy yields a vibrational spectrum of the interface and provides information about the conformation and orientation of molecular groups. Poly-3-hexylthiophene (P3HT) OFETs were fabricated using glass or silicon substrates and silicon oxide and/or poly-methyl-methacrylate (PMMA) for the dielectric layer. SFG spectra were acquired in situ from the channel region of operating OFETs, observing small changes in lineshape, but low signal-to-noise ration did not allow a detailed interpretation. It was found that PMMA vibrational bands appeared when polarizing the device. This phenomenon was considered a new tool for studying the electric field and charge distribution along transistor channels. It was not noted any sign of short term irreversible degradation of the semiconducting polymer, and the change in the electrical behavior was attributed mainly to doping of the polymer by oxygen absorbed in the material.
13

Espectroscopia não linear de interfaces aplicada ao estudo de transistores poliméricos / Nonlinear interface spectroscopy applied to the study of polymeric transistors

Silvia Genaro Motti 20 March 2014 (has links)
O uso de materiais orgânicos em dispositivos eletrônicos, além de menor custo e facilidade de processamento, permite obter flexibilidade e transparência. Entretanto, para que a aplicação comercial desses materiais seja viável, os processos que ocorrem nos dispositivos ainda precisam ser mais bem compreendidos, visando maior eficiência e tempo de vida. É de grande importância o estudo das interfaces entre o semicondutor orgânico e os contatos metálicos, onde ocorre transferência de portadores de carga, e a interface com o dielétrico em transistores orgânicos (OFETs), onde se forma o canal de condução. As interfaces de dispositivos eletrônicos poliméricos foram estudadas, utilizando-se Espectroscopia SFG (do inglês Sum Frequency Generation). Esta técnica obtém um sinal com a soma das frequências de dois feixes incidentes sobrepostos, em um processo seletivo a meios onde não há simetria de inversão, como no caso de interfaces. Com aplicação de um feixe de excitação na região visível e outro sintonizável no infravermelho médio, a espectroscopia SFG fornece um espectro vibracional da interface e permite o estudo do ordenamento e da orientação dos grupos moleculares. Foram construídos e analisados OFETs de poli-3-hexiltiofeno (P3HT) preparados sobre substrato de vidro ou silício, utilizando como isolante óxido de silício e/ou poli-metil-metacrilato (PMMA). Foram obtidos espectros in situ do canal de OFETs em operação, observando pequenas alterações na forma de linha, porém a baixa relação sinal/ruído não permitiu obter conclusões detalhadas. Foi constatada a manifestação de bandas da camada isolante de PMMA como consequência da aplicação de campo elétrico. Este fenômeno foi considerado como uma nova ferramenta para estudar a distribuição de cargas e campo elétrico no canal de transistores. Não foram detectados sinais de degradação irreversível no polímero semicondutor a curto prazo, e a mudança de comportamento elétrico foi atribuída majoritariamente a dopagem por oxigênio absorvido no material. / The usage of organic materials in electronic devices allows not only low cost and ease of processing but also flexibility and transparency. However, to achieve viable commercial application, the processes involved on the devices operation must still be better comprehended, aiming for improved efficiency and life time. There is great importance in the study of the interfaces between organic semiconductors and metallic contacts, where charge transfer takes place, and between the dielectric and semiconductor layers of organic transistors (OFETs), where the conducting channel is formed. The interfaces in polymeric electronic devices were studied by SFG spectroscopy (Sum Frequency Generation). In this technique, a signal with frequency that equals the sum of those of two incident beams is generated in a process only allowed in media without inversion symmetry, such as interfaces. Using a visible excitation beam and a tunable infrared one, SFG spectroscopy yields a vibrational spectrum of the interface and provides information about the conformation and orientation of molecular groups. Poly-3-hexylthiophene (P3HT) OFETs were fabricated using glass or silicon substrates and silicon oxide and/or poly-methyl-methacrylate (PMMA) for the dielectric layer. SFG spectra were acquired in situ from the channel region of operating OFETs, observing small changes in lineshape, but low signal-to-noise ration did not allow a detailed interpretation. It was found that PMMA vibrational bands appeared when polarizing the device. This phenomenon was considered a new tool for studying the electric field and charge distribution along transistor channels. It was not noted any sign of short term irreversible degradation of the semiconducting polymer, and the change in the electrical behavior was attributed mainly to doping of the polymer by oxygen absorbed in the material.
14

Etude de l'oxyde de cuivre CuO, matériau de conversion en film mince pour microbatteries au lithium : caractérisation des processus électrochimiques et chimiques en cyclage / Study of the copper oxide CuO, conversion material prepared in thin film for lithium microbatteries : electrochemical and chemical processes characterizations during cycling

Martin, Lucile 15 November 2013 (has links)
La miniaturisation des appareils électroniques et la multiplication de leurs fonctionnalités conduisent à développer des microsources d’énergie adaptées, parmi lesquelles figurent les microbatteries au lithium. Malgré leurs excellentes performances, ces systèmes de stockage électrochimique tout solide restent toutefois limités en termes de capacité surfacique. Cette caractéristique étant intrinsèquement liée aux matériaux d’électrodes, nous avons choisi de nous intéresser à des couches minces de CuO, dont la capacité volumique théorique (426 µAh .cm-2.µm-1) est sensiblement plus élevée que celle des matériaux d’intercalation utilisés jusqu’à présent. Ce matériau réagit avec le lithium selon un mécanisme particulier, dit de conversion, qui induit la formation d’un système multiphasé et nanostructuré d’une grande complexité. Dans le cadre de ce travail, la compréhension des mécanismes électrochimiques et chimiques mis en jeu au cours du cyclage de couches minces d’oxyde de cuivre (CuO) a été l’objectif majeur. Celui-ci a nécessité une caractérisation fine du matériau actif d’électrode et des interfaces générées (interfaces solide/solide et interface solide/électrolyte). Ces études ont été principalement menées à partir de la Spectroscopie Photoélectronique à Rayonnement X (XPS), de la Microscopie à Force Atomique (AFM) et d’une modélisation théorique exploitant les méthodes de la chimie quantique. Les propriétés chimiques et morphologiques des couches minces de CuO cyclées ont été corrélées à leur comportement électrochimique. Une forte influence de leur structure et de leur morphologie initiales a pu être ainsi mise en évidence / The miniaturization of electronic components and the increasing number of their functionalities lead to the development of suitable energy microsources, among which lithium microbatteries appear. Despite the excellent performances of these all-solid-state electrochemical power sources, one main limitation that remains is their surface capacity. Its value being intrinsically connected to the nature of electrode materials, we chose to focus on CuO thin films which are characterized by a theoretical volumetric capacity (426 µAh .cm-2.µm-1) in far larger than the one of conventional intercalation materials used today. Indeed, this material reacts with lithium according to a particular mechanism, referred as conversion reaction, inducing the formation of a multiphase nanostructured system with a high complexity. In the framework of this study, understanding of electrochemical and chemical mechanisms which take place during the cycling of copper oxide thin films (CuO) was the main objective. This one has required a fine characterization of the electrode active material and the generated interfaces (solid/solid interfaces and solid/electrolyte interface). These studies have been mainly carried out with X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and theoretical approaches based on quantum chemistry methods. The chemical and morphological properties of the cycled CuO thin films have been linked to their electrochemical behavior. An important influence of their initial structure and morphology was then evidenced.

Page generated in 0.0577 seconds