• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 174
  • 174
  • 68
  • 51
  • 47
  • 41
  • 40
  • 40
  • 30
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Comparison of Fatigue Life Evaluation Methods / Jämförelse av beräkningsmetoder för utmattning

Hedberg Lundblad, Louise, Lund, Anna January 2021 (has links)
The aim of this thesis is to investigate a selected set of fatigue life calculation methods and evaluate if they are suitable for fatigue life estimation of truck components at Scania. Failure due to fatigue can be cause by road induced vibrations, which is an inevitable phenomenon trucks are exposed to. By estimating when and where these components will fail, they can be designed to reduce the amount of failure per vehicle. Three types of fatigue life calculation methods, namely equivalent stress methods, critical plane methods and spectral methods, have been evaluated. These are methods for calculating fatigue life in both the time domain and the frequency domain. The chosen calculation methods have been evaluated based on their sensitivity to input parameters, their accuracy on predicting fatigue life and their ability to find the critical areas where the components are most likely to fail. The methods have also been compared to a method already implemented at Scania. To evaluate the methods, two different components were used. The first component was designed to give a multiaxial stress state and the other was a real truck component where fatigue data had been collected from a shake rig test at Scania. It was found that all investigated methods were successful in finding critical areas where failure will occur. However, the resulting estimated fatigue life had a very low accuracy. To draw any conclusions about the accuracy of the fatigue life estimations, a model that better reflects the dynamics of the real truck component is needed. Therefore, the conclusion is that the chosen methods can be used for finding critical areas in a component but not to determine the absolute time to failure for the model used. However, the method already implemented at Scania was equally successful in finding the critical areas and it has a much shorter computational time than the methods in the time domain. Since it is already implemented and used, the Scania method is recommended for the purpose of finding the critical areas of a component. A sensitivity study was conducted in order to investigate the influence of a variation of material parameters on the fatigue life calculated with the different methods. This study showed that the SN-curve parameters are important for the resulting fatigue life of methods that consider the endurance limit, and, therefore, that the choice of SN-curve is important. Since the road induced vibrations in this study caused load signals where the majority of the cycles were found below the endurance limit, methods that account for the endurance limit have to be used for calculations on components experiencing similar conditions. Furthermore, it was found that the resulting stress signal from the FE-analysis using input data from the shake rig test was non-Gaussian, this makes the results from all the chosen frequency domain methods invalid. To use these methods, they need to be extended to consider non-Gaussian signals. / Syftet med detta examensarbete är att undersöka ett antal utvalda metoder för utmattningsberäkning och utvärdera om dessa är lämpliga för att uppskatta livslängden på lastbilskomponenter hos Scania. Haveri på grund av utmattning kan orsakas av vibrationer från vägen, ett fenomen som påverkar komponenter på lastbilar. Genom att uppskatta när och var dessa komponenter går sönder kan de konstrueras för att minska antalet haverier. Olika typer av metoder för utmattningsberäkning i både tidsdomänen och frekvensdomänen har utvärderats. Dessa inkluderade ekvivalenta spännings-metoder, kritiska plan-metoder samt spektrala metoder. Metoderna har utvärderats med avseende på deras känslighet för variation i materialparametrar, hur den beräknade livslängden skiljer sig mot verkliga tester och hur bra de är på att hitta de kritiska områdena på en lastbilskomponent. Detta har även jämförts mot en beräkningsmetod som redan används på Scania. Två olika komponenter användes för att utvärdera metoderna. En av komponenterna var designad för att ge ett multiaxiellt spänningstillstånd och en var en riktig lastbilskomponent med data uppmätt från ett skaktest på Scania. Alla studerade metoder fann de kritiska områdena där utmattningsbrott riskerar att uppstå. Däremot visade det sig att beräkningsmetoderna inte lyckades estimera livslängder som låg i närheten av de som uppmättes under testet i skakriggen. En mer verklighetsnära modell vilken bättre motsvarar de dynamiska egenskaperna av systemet behövs för att kunna dra en slutsats om modellernas träffsäkerhet gällande estimeringen av livslängden. För ändamålet att hitta kritiska områden rekommenderas metoden som redan används hos Scania, eftersom denna var lika framgångsrik att hitta dessa, men gjorde det på en avsevärt kortare tid. Därutöver identifierades att spänningssignalen från FE-analysen, där indata från skakriggen användes, inte var gaussisk. Detta innebär att signalen inte uppfyller kraven för de spektrala metoderna och därmed att resultaten från beräkningarna på lastbilskomponenten inte går att använda för att dra några slutsatser. Känslighetsanalysen visade att de metoder som tar hänsyn till utmattningsgränsen är känsliga för ändringar i SN-parametrar. Detta beror på att många cykler, för det studerade lastfallet, låg nära utmattningsgränsen och att antalet cykler som ingick i beräkningarna därför påverkades stort av SN-parametrarna. Eftersom de vibrationer som uppstår då lastbilar framförs på vägar kan ge upphov till många cykler med amplituder nära utmattningsgränsen bör endast metoder som kan ta hänsyn till utmattningsgränsen användas vid dessa fall.
132

FE-model for prediction of welding distortions in components made of preformed stainless steel sheets / FE-modell för prediktion av kvarvarande deformationer efter svetsning på komponenter gjorda av bockade plåtar i rostfritt stål

Glansholm, Tom January 2020 (has links)
This master thesis was carried out at Scania CV AB. The focus for this thesis is the prediction of welding distortions that can cause problems in the manufacturing process of Scania's after-treatment system. The after-treatment system is mainly assembled by sheet metal plates of the ferritic stainless steel EN 1.4509. The plates are welded together. When welding, distortions and residual stresses occur, and they also depend on the sequence in the component was welded together. The distortions and residual stresses can cause tolerance related issues and a lower lifetime for the welded components. Experiments are expensive and therefore it is desirable to simulate the welding process, thereby controlling distortions and optimizing welding sequences. To simulate the welding process and predict the welding distortions a thermo-mechanical FE-model was created for two typical welds found on the after-treatment system. The first scenario was two thin plates welded onto each other in an overlap weld joint and the second scenario was a thin plate welded onto a thick plate in a overlap weld joint. After the FE-model was compared to the experiments. An optimization of the welding sequences was also made on a larger component typically found on the after-treatment system. The FE-model can predict the distortion shape with good accuracy for the T-fillet weld, while the model predicted a more symmetric distortion shape on the overlap weld compared to a more asymmetric shape found on the experiments, but the error is still not very large. The Fe-model can also be used to optimize the welding sequence for bigger components on the after-treatment system within a reasonable time span compared to doing the opimization manually in an experiment. / Detta examensarbete gjordes för Scania CV AB. Fokus for detta examensarbete har varit kvarvarande deformationer efter svetsning som kan skapa problem vid tillverkningen av Scanias avgasefterbehandlingssystem. Avgasefterbehandlingssystemet är till mesta dels konstruerat av stålplåtar av det ferritiska rostfria stålet EN 1.4509, plåtarna är svetsade ihop och då uppstår kvarvarande deformationer. När komponenter svetsas samman uppstår deformationer och restspänningar. Dessa deformationer och restspänningar är också beroende på i vilken sekvens komponenterna har svetsats ihop. Deformationerna och restspänningarna kan skapa problem med toleranser och sänka livslängden för komponenterna som sammanfogats. Experiment är kostsamma och därför är det önskvärt att simulera svetsprocessen, och därav kontrollera deformationerna som uppstår och optimera i vilken sekvens som komponenterna ska svetsas ihop. För att simulera svetsprocessen och prediktera de kvarvarande deformationerna efter svetsning så gjordes termo-mekanisk FE-model för två vanliga svetsscenarion för avgasefterbehandlingssystemet. Det ena scenariot är två tunna plåtar som svetsas ihop i en överlappande position och det andra var en tunn plåt som svetsas på en tjockare plåt. Ett experiment gjordes sedan för båda svetstyperna. Efter att svetstyperna hade jämförts med experimentet så gjordes en optimering av svetssekvensen för en större komponent likt komponenter funna på avgasefterbehandlingssystemet. Den termomekaniska FE-modelen kunde prediktera de kvarnvarande deformationerna och deras form med bra noggrannhet jämfört med experimentet med undantag för en deformationsform på de tunna plåtarna som var mer symmetrisk i FE-modellen jämfört med den asymmetriska formen i experimentet. FE-modellen kunde också användas för att optimera svetssekvensen för den större komponenten inom en rimlig tidsrymd.
133

Rapid prototyping with fiber composites - Manufacturing of an amphibious UAV / Rapid prototyping med fiberkompositer - tillverkning utav en amfibisk drönare

Ramic, Zlatan January 2021 (has links)
Rapid prototyping has in the last few years gained an ever increasing central role in projects thanks to its agile benefits. Because of that, boundaries regarding what can be accomplished can be pushed and new techniques for achieving goals can be explored at a reasonable cost. A challenge that remains though, is to be able to prototype rapidly with advanced materials such as fibre composites, in a cost effective and reliable manner. The Maritime Robotics Laboratory at KTH Royal Institute of Technology is developing an unmanned fixed-wing aerial vehicle that is also submersible and takes off from the water surface. The design for the craft is completely novel in order to meet the necessary requirements.  The goal of this master's thesis is to assist with the design of the craft in order to ensure its manufacturability. When the design was finished, a structural analysis of said design was performed, utilizing finite element software. This ensured that the correct amount of material was used, where it was needed. Lastly, and the main scope of this thesis, is the manufacture of the components which make up the craft. Several options were considered during the manufacturing process, like vacuum infusion and prepreg due to the varying size and complexity of all the components which are to be manufactured.  More conventional materials (such as medium density fibreboard) was decided upon when manufacturing the molds for the main airframe of the craft due to its sheer size. The method which was decided upon for building all auxiliary components was to use inexpensive 3D-printed polylactic acid molds, coated with glass fibre reinforce adhesive polytetrafluoroethylene film, in conjunction with a low-temperature prepreg. The trials eventually turned out successful and the components which were built using this technique came out according to their specified dimensions that were provided and in accordance to the structural analysis which was conducted. This is promising for rapid prototyping in where only entry-level composites manufacturing equipment is accessible. / "Rapid prototyping" (Snabb prototyptillverkning) har under de senaste åren fått en allt mer central roll i projekt tack vare dess agila fördelar. På grund av detta kan gränser för vad som kan åstadkommas tänjas på och nya tekniker för att uppnå mål kan undersökas till en rimlig kostnad. En utmaning som dock kvarstår är att snabbt kunna ta fram prototyper med avancerade material som fiberkompositer på ett kostnadseffektivt och pålitligt sätt. Maritime Robotics Laboratory vid KTH utvecklar en drönare som är nedsänkbar under vatten och lyfter från vattenytan. Designen för detta är helt ny för att uppfylla den önskade kravspecifikation. Målet med detta examensarbetet är att hjälpa till med utformningen av drönaren för att säkerställa dess tillverkbarhet. Designarbetet omfattar en strukturanalys med användning av finita elementmetoder. Detta för att säkerställa att rätt mängd material används där det behövs. Slutligen, och huvuduppgiften för detta projekt, är tillverkningen av de komponenter som utgör drönaren. Flera alternativ övervägdes under tillverkningsprocessen, som vakuuminjektion och prepreg på grund av den varierande storleken och komplexiteten hos alla komponenter som ska tillverkas. Mer konventionella material (som t.ex. medium density fibre, fiberspånskiva) valdes vid tillverkning av formarna för drönarens skrov på grund av dess stora storlek. Metoden som beslutades för att bygga alla hjälpkomponenter var att använda billiga 3D-printade polylaktid-formar, belagda med glasfiberarmerade självhäftande polytetrafluoreten-film, i kombination med en lågtemperatur prepreg. Försöken blev så småningom framgångsrika och komponenterna som byggdes med dessa metoder blev producerade enligt deras angivna dimensioner som gavs och i enlighet med den strukturella analys som utfördes. Detta är lovande för snabb prototyping där utrustning för produktion med kompositmaterial är begränsad till inträdesnivå.
134

Machine Learning Models for Computational Structural Mechanics

Mehdi Jokar (16379208) 06 June 2024 (has links)
<p>The numerical simulation of physical systems plays a key role in different fields of science and engineering. The popularity of numerical methods stems from their ability to simulate complex physical phenomena for which analytical solutions are only possible for limited combinations of geometry, boundary, and initial conditions. Despite their flexibility, the computational demand of classical numerical methods quickly escalates as the size and complexity of the model increase. To address this limitation, and motivated by the unprecedented success of Deep Learning (DL) in computer vision, researchers started exploring the possibility of developing computationally efficient DL-based algorithms to simulate the response of complex systems. To date, DL techniques have been shown to be effective in simulating certain physical systems. However, their practical application faces an important common constraint: trained DL models are limited to a predefined set of configurations. Any change to the system configuration (e.g., changes to the domain size or boundary conditions) entails updating the underlying architecture and retraining the model. It follows that existing DL-based simulation approaches lack the flexibility offered by classical numerical methods. An important constraint that severely hinders the widespread application of these approaches to the simulation of physical systems.</p> <p><br></p> <p>In an effort to address this limitation, this dissertation explores DL models capable of combining the conceptual flexibility typical of a numerical approach for structural analysis, the finite element method, with the remarkable computational efficiency of trained neural networks. Specifically, this dissertation introduces the novel concept of <em>“Finite Element Network Analysis”</em> (FENA), a physics-informed, DL-based computational framework for the simulation of physical systems. FENA leverages the unique transfer knowledge property of bidirectional recurrent neural networks to provide a uniquely powerful and flexible computing platform. In FENA, each class of physical systems (for example, structural elements such as beams and plates) is represented by a set of surrogate DL-based models. All classes of surrogate models are pre-trained and available in a library, analogous to the finite element method, alleviating the need for repeated retraining. Another remarkable characteristic of FENA is the ability to simulate assemblies built by combining pre-trained networks that serve as surrogate models of different components of physical systems, a functionality that is key to modeling multicomponent physical systems. The ability to assemble pre-trained network models, dubbed <em>network concatenation</em>, places FENA in a new category of DL-based computational platforms because, unlike existing DL-based techniques, FENA does not require <em>ad hoc</em> training for problem-specific conditions.</p> <p><br></p> <p>While FENA is highly general in nature, this work focuses primarily on the development of linear and nonlinear static simulation capabilities of a variety of fundamental structural elements as a benchmark to demonstrate FENA's capabilities. Specifically, FENA is applied to linear elastic rods, slender beams, and thin plates. Then, the concept of concatenation is utilized to simulate multicomponent structures composed of beams and plate assemblies (stiffened panels). The capacity of FENA to model nonlinear systems is also shown by further applying it to nonlinear problems consisting in the simulation of geometrically nonlinear elastic beams and plastic deformation of aluminum beams, an extension that became possible thanks to the flexibility of FENA and the intrinsic nonlinearity of neural networks. The application of FENA to time-transient simulations is also presented, providing the foundation for linear time-transient simulations of homogeneous and inhomogeneous systems. Specifically, the concepts of Super Finite Network Element (SFNE) and network concatenation in time are introduced. The proposed concepts enable training SFNEs based on data available in a limited time frame and then using the trained SFNEs to simulate the system evolution beyond the initial time window characteristic of the training dataset. To showcase the effectiveness and versatility of the introduced concepts, they are applied to the transient simulation of homogeneous rods and inhomogeneous beams. In each case, the framework is validated by direct comparison against the solutions available from analytical methods or traditional finite element analysis. Results indicate that FENA can provide highly accurate solutions, with relative errors below 2 % for the cases presented in this work and a clear computational advantage over traditional numerical solution methods. </p> <p><br></p> <p>The consistency of the performance across diverse problem settings substantiates the adaptability and versatility of FENA. It is expected that, although the framework is illustrated and numerically validated only for selected classes of structures, the framework could potentially be extended to a broad spectrum of structural and multiphysics applications relevant to computational science.</p>
135

Numerical Simulation and Poromechanical Modeling of Subcutaneous Injection of Monoclonal Antibodies

Mario de Lucio Alonso (18424047) 28 April 2024 (has links)
<p dir="ltr">Subcutaneous injection for self-administration of biotherapeutics, such as monoclonal antibodies (mAbs), is becoming increasingly prominent within the pharmaceutical sector due to its benefits in patient compliance and cost-effectiveness. The success of this drug delivery process depends on the coupled mechanical and transport phenomena within the subcutaneous tissue, both during and after the injection. Yet, the details of these processes are not well-elucidated, sparking a surge in computational efforts to fill this knowledge gap. Remarkably, there are very few computational studies on subcutaneous injection into three-dimensional porous media that account for large tissue deformations, drug transport and absorption, the use medical devices, and human factors. Here, we develop a high-fidelity computational framework to study large-volume subcutaneous injection of mAbs. Our investigation begins with a linear poroelastic model without drug transport, which we employ to study the effect of tissue deformation on injection dynamics. We progressively enhance this model, advancing to a nonlinear porohyperelastic framework that include drug transport and absorption. To capture the anisotropy of subcutaneous tissue, we employ a fibril-reinforced porohyperelastic model. Furthermore, we integrate the multi-layered structure of skin tissue by creating data-driven geometrical models of the tissue layers derived from histological data. Our analysis explores the impact of different handheld autoinjectors on the injection dynamics for various patient-applied forces. We investigate the effect of different pre-injection techniques, such as the pinch and stretch methods, on the drug transport and absorption. Additionally, we evaluate the impact of several physiological variables, including flow rate, injection depth, and body mass index. Our simulations yield crucial insights essential for comprehending and improving subcutaneous drug administration of mAbs. Additionally, they offer a deeper understanding of the human aspect of the injection procedure, thereby paving the way for advancements in the development of patient-centered injection devices and techniques.</p>
136

Static and dynamic performance of Ti foams

Siegkas, Petros January 2014 (has links)
Titanium (Ti) foams of different densities 1622-4100 Kgm-3 made by a powder sintering technique were studied as to their structural and mechanical properties. The foams were tested under static and dynamic loading. The material was tested quasi statically and dynamically under strain rates in the range of 0.001-2500 s-1 and under different loading modes. It was found that strain rate sensitivity is more pronounced in lower density foams. Experiments were complimented by virtual testing. Based on the Voronoi tessellations a computational method was developed to generate stochastic foam geometries. Statistical control was applied to produce geometries with the microstructural characteristics of the tested material. The generated structures were numerically tested under different loading modes and strain rates. Voronoi polyhedrals were used to form the porosity network of the open cell foams. The virtually generated foams replicated the geometrical features of the experimentally tested material. Meshes for finite element simulations were produced. Existing material models were used for the parent material behaviour (sintered Ti) and calibrated to experiments. The virtual foam geometries of different densities were numerically tested quasi statically under uniaxial, biaxial and triaxial loading modes in order to investigate their macroscopic behaviour. Dynamic loading was also applied for compression. Strain rate sensitive and insensitive models were used for the parent material model in order to examine the influence of geometry and material strain rate sensitivity under high rates of deformation. It was found that inertial effects can enhance the strain rate sensitivity for low density foams and numerical predictions for the generated foam geometries were in very good agreement with experimental results. Power laws were established in scaling material properties with density. The study includes: 1. Information on the material behaviour and data for macroscopically modelling this type of foams for a range of densities and under different strain rates. 2. A proposed method for virtually generating foam geometries at a microscopic scale and examine the effect of geometrical characteristics on the macroscopic behaviour of foams.
137

Probing the deformation of ductile polycrystals by synchrotron X-ray micro-diffraction

Hofmann, Felix January 2011 (has links)
Microscopic beams of penetrating synchrotron radiation provide a unique tool for the analysis of material structure and deformation. This thesis describes my contributions to the development of new synchrotron X-ray micro-beam diffraction experimental techniques and data interpretation, and the use of experimental results for the validation of material deformation models. To study deeply buried material volumes in thick samples, the micro-beam Laue technique was extended to higher photon energies. Through-thickness resolution was achieved either by a wire scanning approach similar to Differential Aperture X-ray Microscopy (DAXM), or by applying tomographic reconstruction principles to grain-specific Laue pattern intensity. Both techniques gave promising first results. For reliable micro-beam Laue diffraction measurements of elastic strains in individual grains of a polycrystal, understanding of the error sources is vital. A novel simulation-based error analysis framework allowed the assessment of individual contributions to the total measurement error. This provides a rational basis for the further improvement of experimental setups. For direct comparison of experimental measurements and dislocation dynamics simulations, diffraction post-processing of dislocation models in two and three dimensions was developed. Simulated diffraction patterns of two-dimensional dislocation cell/wall type structures captured correctly some of the features observed experimentally in reciprocal space maps of a large-grained, lightly deformed aluminium alloy sample. Crystal lattice rotations computed from three-dimensional dislocation dynamics simulations of a Frank-Read source showed anisotropic orientation spread similar to that observed in micro-beam Laue experiments. For the experimental study of crystal lattice distortion, a novel technique was proposed that combines micro-beam Laue diffraction with scanning white-beam topography. Diffraction topography allows the study of lattice rotation at scales smaller than the scanning beam size. The new technique makes it possible to apply classical topography methods to deformed samples.
138

Variational modelling of cavitation and fracture in nonlinear elasticity

Henao Manrique, Duvan Alberto January 2009 (has links)
Motivated by experiments on titanium alloys of Petrinic et al. (2006), which show the formation of cracks through the growth and coalescence of voids in ductile fracture, we consider the problem of formulating a variational model in nonlinear elasticity compatible both with cavitation and the appearance of discontinuities across two-dimensional surfaces. As in the model for cavitation of Müller and Spector (1995) we address this problem, which is connected to the sequential weak continuity of the determinant of the deformation gradient in spaces of functions having low regularity, by means of adding an appropriate surface energy term to the elastic energy. Based upon considerations of invertibility, we derive an expression for the surface energy that admits a physical and a geometrical interpretation, and that allows for the formulation of a model with better analytical properties. We obtain, in particular, important regularity results for the inverses of deformations, as well as the weak continuity of the determinants and the existence of minimizers. We show, further, that the creation of surface can be modeled by carefully analyzing the jump set of the inverses, and we point out some connections between the analysis of cavitation and fracture, the theory of SBV functions, and the theory of Cartesian currents of Giaquinta, Modica, and Soucek. In addition to the above, we extend previous work of Sivaloganathan, Spector and Tilakraj (2006) on the approximation of minimizers for the problem of cavitation with a constraint in the number of flaw points, and present some numerical results for this problem.
139

Structural analysis of thermal interface materials and printed circuit boards in telecom units - a methodology

Good, Mattias January 2016 (has links)
En struktur analys på Ericssons MINILINK-6352 har utförts för att undersöka spänningar och deformationer på enheten, främst med fokus på de termiska gränskiktsmaterialen och buktningar av kretskortet. Dessa är viktiga aspekter när man överväger om enheten är termiska lämpad ur en mekanisk synvinkel, där god ytkontakt mellan de olika kropparna är avgörande för ordentlig kylning genom värmeledning. Analysen kräver tillräcklig materialdata till gränskiktsmaterialen och kretskortet för att kunna skapa lämpliga matematiska modeller. Enaxliga kompressionstester har genomförts för att karakterisera de hyperelastiska och viskoelastiska lagar för fyllda silikongummimaterial som används som termiska gränskiktsmaterial, som ibland kallas för gappad. Böjning av ett kretskort simulerades och jämfördes med ett tre--punkts böjtest för att verifiera om befintlig materialdata i beräkningsprogrammen var tillräcklig, jämförelsen visade god överensstämmelse. Kretskortet med dess komponenter, som modellerades som styva block, med gappads ovanpå som komprimeras av en platta simulerades och ett svagt område hittades. Detta område var sedan tidigare känt och har i ett senare skede eliminerats genom att tillsätta ytterligare en stödpelare. Därav visar denna studie en metod för att hitta intressanta regioner tidigt i konstruktionsfasen som lätt kan ändras för att uppfylla nödvändiga krav och undvika brister i konstruktionen. Arbetet har visat sig användbart genom att hitta detta svaga område i exempel produkten, arbetet ger även tillräckligt med information och exempeldata för att ytterligare utreda liknande produkter. Kombinationen av erfarenhet och simulering möjliggör smartare designval. / A structural analysis on Ericssons MINILINK-6352 has been performed in order to investigate stresses and deformations of the unit, mainly focusing on the thermal interface materials and warpage of the printed circuit boards. These are important aspects when considering if the unit is thermally adequate from a mechanical point of view, where good surface contact between various bodies are critical for proper cooling through heat conductivity. The analysis requires sufficient materal data for the interface material and the circuit board in order to create suitable mathematical models. Uniaxial compression tests have been conducted to characterise the hyperelastic and viscoelastic constitutive laws of a filled silicone rubber material used as a thermal interface material, commonly referred to as a thermal pad. Bending of a printed circuit board was simulated and compared to a three-point bend test on the circuit board in order to verify material data already available in the computational software, which showed good agreement. The entire radio unit was mechanically analysed during its sealing process. The circuit board with attached components modelled as stiff blocks with thermal pads on top compressed by plates was simulated and a weak area was found. This area in question was already known and has in a later stage been eliminated by adding an additional supporting pillar. Hence this study shows a methodology to find regions of interest at an early design phase which can easily be altered to fulfil necessary requirements and eliminate design flaws. This work has proven useful in finding weak regions in the example product, it also provides enough information and example data to further investigate similar products. The combination of experience and simulation allows for smarter design choices.
140

Experimentally simulating high rate deformation of polymers and composites

Kendall, Michael James January 2013 (has links)
The research presented in this dissertation presents a methodology to experimentally predict and simulate the mechanical behavior of polymers under high strain rate deformation. Specifically, the interplay between the effects of temperature and strain rate on polymer behavior is examined and then used as a tool to help recreate the high rate mechanical response of several different polymers: ranging from rubbers to amorphous polymers to composites. Multiple literature reviews are conducted and presented in this thesis, e.g. experimental mechanics test methods, high rate behavior, time-temperature equivalence, constitutive modeling, and temperature measurement methods. In accordance with mechanical theory, an experimental and analytical protocol in rate- and temperature- dependence was applied to a range of PVC materials ranging in plasticizer contents. Further to this, these PVC materials were modeled with a rubbery model describing the network stress seen in polymer behavior, and an amorphous polymer model to describe PVC low to high rate responses to deformation. This modeling develops insights in the adiabatic nature of high rate response. Time-temperature equivalence, and the temperature rise during adiabatic deformation, are studied and exploited in order to implement a proposed experimental method which simulates the high rate deformation of polymeric materials. The development of an experimental methodology to simulate and predict high rate behavior is presented, applied, and expanded to a range of materials: amorphous polymers (e.g. PVC 20wt% plasticizer, PMMA, PC) and composites (e.g. polymer bonded explosive simulant). The work also presents and highlights the fact that micro to nano-scale imaging may be used in parallel with the simulation method in order to better understand high rate behavior. Furthermore, in result of the studies conducted in this body of work, several novel techniques were developed, or improved upon, and applied to the current research (e.g. additions to time-temperature equivalence, temperature measurement methods at high, moderate, and low strain rates, and a method for measuring the high rate behavior of soft materials).

Page generated in 0.0722 seconds