• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 174
  • 174
  • 68
  • 51
  • 47
  • 41
  • 40
  • 40
  • 30
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modeling and characterization of wire harnesses for digital manufacturing applications

Vemula, Sai Siddhartha January 2021 (has links)
No description available.
122

EXPLICIT BOUNDARY SOLUTIONS FOR ELLIPSOIDAL PARTICLE PACKING AND REACTION-DIFFUSION PROBLEMS

Huanyu Liao (12880844) 16 June 2022 (has links)
<p>Moving boundary problems such as solidification, crack propagation, multi-body contact or shape optimal design represent an important class of engineering problems. Common to these problems are one or more moving interfaces or boundaries. One of the main challenges associated with boundary evolution is the difficulty that arises when the topology of the geometry changes. Other geometric issues such as distance to the boundary, projected point on the boundary and intersection between surfaces are also important and need to be efficiently solved. In general, the present thesis is concerned with the geometric arrangement and behavioral analysis of evolving parametric boundaries immersed in a domain. </p> <p>The first problem addressed in this thesis is the packing of ellipsoidal fillers in a regular domain and to estimate their effective physical behavior. Particle packing problem arises when one generates simulated microstructures of particulate composites. Such particulate composites used as thermal interface materials (TIMs) motivates this work. The collision detection and distance calculation between ellipsoids is much more difficult than other regular shapes such as spheres or polyhedra.  While many existing methods address the spherical packing problems, few appear to achieve volume loading exceeding 60%. The packing of ellipsoidal particles is even more difficult than that of spherical particles due to the need to detect contact between the particles. In this thesis, an efficient and robust ultra-packing algorithm termed Modified Drop-Fall-Shake is developed. The algorithm is used to simulate the real mixing process when manufacturing TIMs with hundreds of thousands ellipsoidal particles. The effective thermal conductivity of the particulate system is evaluated using an algorithm based on Random Network Model. </p> <p><br></p> <p>In problems where general free-form parametric surfaces (as opposed to the ellipsoidal fillers) need to be evolved inside a regular domain, the geometric distance from a point in the domain to the boundary is necessary to determine the influence of the moving boundary on the underlying domain approximation. Furthermore, during analysis, since the driving force behind interface evolution depends on locally computed curvatures and normals, it is ideal if the parametric entity is not approximated as piecewise-linear. To address this challenge,  an algebraic procedure is presented here to find the level sets of rational parametric surfaces commonly utilized by commercial CAD systems. The developed technique utilizes the resultant theory to construct implicit forms of parametric Bezier patches, level sets of which are termed algebraic level sets (ALS). Boolean compositions of the algebraic level sets are carried out using the theory of R-functions. The algebraic level sets and their gradients at a given point on the domain can also be used to project the point onto the immersed boundary. Beginning with a first-order algorithm, sequentially refined procedures culminating in a second-order projection algorithm are described for NURBS curves and surfaces. Examples are presented to illustrate the efficiency and robustness of the developed method. More importantly, the method is shown to be robust and able to generate valid solutions even for curves and surfaces with high local curvature or G<sub>0</sub> continuity---problems where the Newton--Raphson method fails due to discontinuity in the projected points or because the numerical iterations fail to converge to a solution, respectively. </p> <p><br></p> <p>Next, ALS is also extended for boundary representation (B-rep) models that are popularly used in CAD systems for modeling solids. B-rep model generally contains multiple NURBS patches due to the trimming feature used to construct such models, and as a result are not ``watertight" or mathematically compatible at patch edges. A time consuming geometry clean-up procedure is needed to preprocess geometry prior to finite element mesh generation using a B-rep model, which can take up to 70% of total analysis time according to literature. To avoid the need to clean up geometry and directly provide link between CAD and CAE integration,  signed algebraic level sets using novel inner/outer bounding box strategy is proposed for point classification of B-rep model. Several geometric examples are demonstrated, showing that this technique naturally models single patch NURBS geometry as well, and can deal with multiple patches involving planar trimming feature and Boolean operation. During the investigation of algebraic level sets, a complex self-intersection problem is also reported, especially for three-dimensional surface. The self-intersection may occur within an interval of interest during implicitization of a curve or surface since the implicitized curve or surface is not trimmed and extends to infinity. Although there is no robust and universal solution the problem, two potential solutions are provided and discussed in this thesis.</p> <p><br></p> <p>In order to improve the computational efficiency of analysis in immersed boundary problems, an efficient local refinement technique for both mesh and quadrature  using the kd-tree data structure is further proposed. The kd-tree sub-division is theoretically proved to be more efficient against traditional quad-/oct-tree subdivision methods. In addition, an efficient local refinement strategy based on signed algebraic level sets is proposed to divide the cells. The efficiency of kd-tree based mesh refinement and adaptive quadrature is later shown through numerical examples comparing with oct-tree subdivision, revealing significant reduction of degrees of freedom and quadrature points.</p> <p><br></p> <p>Towards analysis of moving boundaries problems, an explicit interface tracking method termed enriched isogeometric analysis (EIGA) is adopted in this thesis. EIGA utilizes NURBS shape function for both geometry representation and field approximation. The behavior field is modeled by a weighted blending of the underlying domain approximation and enriching field, allowing high order continuity naturally. Since interface is explicitly represented, EIGA provides direct geometric information such as normals and curvatures. In addition, the blending procedure ensures strong enforced boundary conditions. An important moving boundary problem, namely, reaction-diffusion problem, is investigated using EIGA. In reaction-diffusion problems, the phase interfaces evolve due to chemical reaction and diffusion under multi-physics driven forces, such as mechanical, electrical, thermal, etc. Typical failure phenomenon due to reaction-diffusion problems include void formation and intermetallic compound (IMC) growth. EIGA is applied to study factors and behavior patterns in these failure phenomenon, including void size, current direction, current density, etc. A full joint simulation is also conducted to study the degradation of solder joint under thermal aging and electromigration. </p>
123

The effect of preload on the fatigue strength of additively manufactured 316L stainless steel / Effekten av förbelastning på utmattningen av additivt tillverkat 316L rostfritt stål

Subasic, Mustafa January 2020 (has links)
In this thesis an investigation of the effect of preload on the fatigue behaviour of additively manufactured (AM) 316L stainless steel parts with less than 5 % porosity, for both horizontal and vertical build direction, is presented. The specimens used were manufactured by selective laser melting (SLM) and cut by EDM. Preloads at two different magnitudes were used, below and above the yield strength of the material, and fatigue tests were performed on the specimens with and without the preloads. In addition, microstructural analysis was carried out in order to illustrate/quantify the defects and to realize the corresponding effect of the preload by use of white light interferometry (WLI), SEM and FEM modeling. It was found that the fatigue life and the fatigue limit clearly increase with increasing the preloads in both build directions, although the preload significance might be varied for different directions. This was attributed to the imposed compressive residual stresses and blunting of sharp defects after preloading. / I detta examensarbete presenteras en undersökning på effekten av förbelastning på utmattningsbeteendet hos additivt tillverkade (AM) komponenter av 316L rostfritt stål med mindre än 5 % porositet, för både horisontell och vertikal byggriktning. Provstavarana tillverkades genom selektiv lasersmältning (SLM) och skars ut med trådgnist (EDM). Förspänningar i två olika storlekar användes, under och över materialets sträckgräns, och utmattningstester utfördes på provstavarna med och utan förspänningarna. Dessutom genomfördes mikrostrukturella analyser för att illustrera / kvantifiera defekterna och effekten av förspänningen med användning av vitt ljusinterferometri (WLI), SEM och FEM-modellering. Det visade sig att utmattningslivslängden och utmattningsgränsen tydligt ökar med ökad förspänning i båda byggriktningarna, även om förspänningens betydelse kan variera för olika riktningar. Denna positiva effekt på utmattningen kommer från de kompressiva restspänningarna och avstumpningen av skarpa defekter som uppstår efter förbelastningen.
124

HETEROGENEOUS STRUCTURAL ELEMENTS BASED ON MECHANICS OF STRUCTUE GENOME

Rong Chiu (15452933) 11 August 2023 (has links)
<p>The Mechanics of Structural Genome (MSG) is a unified homogenization theory used to find equivalent constitutive models for beam, plate, and solid structures. It has been proven accurate for periodic structures. However, for certain applications such as non-prismatic wind turbine blades and helicopter flexbeams featuring ply drop-off, where there is no repeating structure and the periodic boundary condition cannot be used, MSG's accuracy is limited. In this work, we aim to extend MSG to find element stiffness matrices directly for aperiodic structures, instead of beam properties or three-dimensional (3D) solid material properties. Two finite elements based on MSG have been developed: Heterogeneous Beam Element (HBE) and Heterogeneous Solid Element (HSE).</p> <p><br></p> <p>For beam modeling, the beam-like structure is homogenized into a series of 3-node Heterogeneous Beam Elements (HBE) with 18×18 effective beam element stiffness matrices. These matrices are used as input for one-dimensional (1D) beam analysis using the Abaqus User Element subroutine (UEL). Using the macroscopic beam analysis results as input, we can also perform dehomogenization to predict the stresses and strains in the original structure. We use three examples (a prismatic composite beam, an isotropic homogeneous tapered beam, and a composite tapered beam) to demonstrate the capability of HBE and show its advantages over the MSG cross-sectional analysis approach. HBE can capture macroscopic behavior and detailed stresses due to non-prismatic geometry.</p> <p><br></p> <p>The Heterogeneous Solid Element (HSE) is developed based on MSG to model a heterogeneous body as an equivalent solid element using an effective element stiffness matrix. HSE modeling includes homogenization, macroscopic global analysis, and dehomogenization to recover local strains/stresses. HSE avoids the local periodicity assumption for traditional multiscale modeling techniques for composite structures that compute effective material properties instead. Abaqus composite solid element and MSG-based traditional multiscale modeling are used to validate the accuracy of HSE. All example results show that HSE is more accurate in predicting global structural behavior and local strains/stresses.</p> <p><br></p> <p>HBE and HSE provide a new concept for modeling aperiodic composite structures by modeling structures into equivalent beam or solid elements instead of beam properties of the reference line in 1D beam analysis or material properties of material points in solid structural analysis.</p>
125

MECHANICS AND DYNAMICS OF PARTICLE NETWORK IN COMPOSITE ELECTRODES

Nikhil Sharma (16648830) 04 August 2023 (has links)
<p>Energy storage devices have become an integral part of the digital infrastructure of the 21st century. Li-ion batteries are a widely used chemical form of energy storage devices comprising components with varied chemical, mechanical and electrochemical properties. Over long-term usage, the anode and cathode experience spatially heterogeneous Li reaction, mechanical degradation, and reversible capacity loss. The small particle size and environmental sensitivity of materials used in Li-ion battery materials make investigating electrodes' electrochemical and mechanical properties an arduous task. Nevertheless, understanding the effect of electrochemical fatigue load (during the battery's charging and discharging process) on composite electrodes' mechanical stability is imperative to design and manufacture long-lasting energy storage devices.</p><p>Due to the low-symmetry lattice, Lithium Nickel Manganese Cobalt Oxide (NMC) cathode materials exhibit direction-dependent (anisotropic) mechanical properties. In this Dissertation, we first measure the anisotropic elastic stiffness of NMC cathode material using nano-indentation. We also determine the effect of Ni stoichiometry on the indentation modulus, hardness, and fracture toughness of NMC materials. The complete information on the mechanical properties of cathode materials will enable accurate computational results and the design of robust cathodes.</p><p>Further, using operando optical experiments, we report that NMC porous composite cathode experiences asynchronous reactions only during the 1st charging process. Non-uniform carbon binder network coverage across the cathode and Li concentration-dependent material properties of NMC results in the initial asynchronous phenomenon. The information on the degree of electrochemical conditioning of Li-ion battery cathode obtained from optical microscopy can test the consistency of product quality in the industrial manufacturing process. We also investigate the effects of non-uniform reactions on active material’s local morphology change and study the evolution of particle network over long-term cycling. Reported data from experiments depicts that in the early cycles, individual particles’ characteristics significantly influence the degree of damage across the cathode.</p><p>However, the interaction with neighboring particles becomes more influential in later cycles. Computational modeling uses a multiphysics-based theoretical framework to explain the interplay between electrochemical activity and mechanical damage. The methodology, theoretical framework, and experimental procedure detailed here will enable the design of efficient composite electrodes for long-lasting batteries.</p>
126

The Statistical Foundations of Line Bundle Continuum Dislocation Dynamics

Joseph P Anderson (16642074) 27 July 2023 (has links)
<p>A first-principles theory of plasticity in metals currently does not exist. While many plasticity models make reference to rules based on heuristic arguments regarding dislocations (the fundamental mediators of plastic deformation in crystals), the scientific community still does not have a theory of dislocation dynamics which can recover even basic features of plasticity theory. Discrete dislocation dynamics, though a valuable tool for understanding fundamentals topics in dislocation plasticity, becomes unusable beyond ~1.5\% strain due to the line length multiplication inherent in deformation. As a result, it is necessary to develop continuum theories of dislocation dynamics which treat dislocation densities rather than individual dislocations. This thesis examines the foundations of one such continuum theory: line bundle continuum dislocation dynamics, which assumes that dislocations are roughly parallel at every point. First, this assumption is given definite meaning and it is shown from discrete dislocation dynamics data that to be appropriate when modelling dislocation densities on fine length scales (resolving densities on lengths less than 100 nm). Second, it is found that an additional driving force, the correlation stress, emerges from coarse-graining the line bundle dynamics. This correction to the dislocation interactions is dependent on tensorial dislocation correlation functions describing the short-range errors in the products of dislocation densities lying on two slip systems. The full set of these dislocation correlation functions are evaluated from discrete density data with the aid of a novel left-and-right handed classification of slip system interactions in FCC crystals. Lastly, a study of the correlation stress in a representative dislocation system suggests that these stresses are roughly one tenth the magnitude of the mean-field dislocation interaction stress. Taken together, this thesis bridges discrete and continuum models of dislocation dynamics and provides a foundation for future work on a first-principles theory of metal plasticity. </p>
127

Modelling of a Glued Bolt Joint in Finite Element / FEM-modellering av limförband

Boivie, Tove January 2023 (has links)
This report presents a master thesis project at KTH at the school of Engineering Science. The project is done in collaboration with ABB Robotics, a company who develops industrial robots. A robot consists of several parts and the last structural part is the wrist. During the project, a glued bolt joint, commonly named hybrid joint, in the wrist was investigated. The glued bolt joint mounts a protecting cover to the wrist and is a vital component to prevent leakage and provide structural strength to the wrist. The project's purpose was to create a time efficient and accurate methodology how to model the glue bolt joint in Finite element. Four different modelling methods of the adhesive layer were developed. One method includes friction contact, one method includes glue spring contact, one method includes solid element, and the last method includes cohesive elements. The developed methods were based on the pre-study and a previous master thesis project collaborated with the company. The modelling methods were verified against lab measurement where stresses in the wrist and bolt stresses were measured. Furthermore, to include the bolt preload in the models, a modelling and post-processing method was developed. The results showed similar simulated and measured von Mises stress in the structure of the wrist. However, the simulated bolt stress was significantly higher compared to the measured bolt stress for all methods. The main conclusion with the project is that none of the methods is accurate enough and further verification of the methods needs to be done before an accurate method can be determined. / Denna rapport presenterar ett examensarbete på Skolan för teknikvetenskap på KTH. Projektet är gjort i samarbete med ABB Robotics, ett företag som utvecklar industrirobotar. En robot består av flera delar, vara av den sista delen är handleden. I projektet undersöks ett limmat skruvförband, kommersiellt känd som hybrid förband, i handleden. Det limmande skruvförbandet monterar ett skyddande lock på handleden och är en viktig komponent för att minska risken för läckage och etablera styvhet till konstruktionen. Syftet med projektet var att skapa en tidseffektiv och säker metod hur det limmade skruvförbandet kan modelleras i Finita element. Fyra olika modelleringsmetoder av förbandet togs fram. En metod innefattade friktions kontakt, en metod innefattade en limmad fjäder liknande kontakt, en metod innefattade solida element och den sista metoden innefattade cohesive element. De utvecklade metoderna bygger på förstudier av ämnet samt ett tidigare examensarbete utfört för företaget. Modelleringsmetoder verifierades mot labbmätningar där spänningar i handleden samt spänningar i skruvarna var mätta. Det togs även fram en modellering och post-processering metod för att inkludera förspänningen i skruvarna till modellen. Resultatet visade överensstämmelse mellan de simulerade och uppmätta von Misses spänningar i strukturen av handleden för samtliga metoder. Däremot visade resultaten att den simulerade spänningarna i skruvarna var högre jämfört med de uppmätta spänningarna i skruvarna. Den huvudsakliga slutsatsen av projektet var att ingen av de utvecklade metoderna ger tillräcklig säkra resultat och vidare verifikationer av metoderna behövs göras innan en säker metod kan blir utvecklad.
128

Linear Impact of Bicycle Helmet – Experimental Testing and FE-modelling / Linjärt islag av cykelhjälm – Experimentell testning och FE-modellering

Dahlin, Ludvig, Larsson Regnström, Ebba January 2022 (has links)
The aim with this master thesis was to set up a FE-simulation of an impact test of a bike helmet in LS-DYNA that correlates well with the peak acceleration score of a real life impact test. Furthermore, a parametric study has been performed in LS DYNA to investigate the robustness of the model, as well as to see which parameters have a great influence on the peak acceleration score. To investigate the acceleration of the helmet, helmet drop tests have been performed at the Borås RISE lab. Building an FE-model of the helmet drop test required multiple iterations to ensure stability and accuracy of the model. The steps of the modelling process included investigating previous simulations of helmet impacts in LS-DYNA, preprocessing of CAD, defining material models and establishing contact and boundary conditions. The parameters that have proven to have a great impact on the peak acceleration value are the tensile stress cutoff, the PC shell thickness, the strain rate dependency, and the EPS thickness. A conclusion of this work is that FE modelling is a way to approximate the peak acceleration value for linear impact tests, and a useful tool for investigating design parameters. The density of the EPS foam is shown to have a large influence on the peak acceleration value in both the experimental tests and the FE simulation. From the FE simulationns, the thickness of the EPS, as well as the thickness of the PC shell have shown to have a great impact on the peak acceleration score. / Syftet med denna masteruppsats var att sätta upp en FE-simulering av ett islagstest för en cykelhjälm i LS-DYNA som korrelerar bra med experimentella islagstest. Vidare har en parametrisk studie utförts i LS DYNA för att undersöka modellens robusthet, samt för att se vilka parametrar som har en stor påverkan på maxaccelerationen. För att undersöka hjälmens acceleration, har islagstester av cykelhjälmar utförts på RISE lab i Borås. För att bygga en FE-modell av ett islagstest krävdes flera iterationer för att säkerställa modellens stabilitet och noggrannhet. Stegen i modelleringsprocessen inkluderade undersökning av tidigare simuleringar av hjälmar i LS-DYNA, förbearbetning av CAD-filer, definiering av materialmodeller och upprättande av kontakt och gränsvillkor. De parametrar som har visat sig har en stor inverkan på det maximala accelerationsvärdet är dragspänningsgränsen, skaltjockleken på PC:n, töjningshastighetsberoendet och EPS-tjockleken. En slutsats av detta arbete är att FE-modellering är ett sätt att approximera värdet på maxaccelerationen för linjära islagstester och ett användbart verktyg för att undersöka designparametrar. Densiteten av EPS-skum har visat sig ha en stor inverkan på maxaccelerationsvärdet i både experimentella tester och FE-simuleringen.
129

<b>Influence of Surface Features on Tribological and Fatigue Performance of Machine Components</b>

Kushagra Singh (12988043) 29 August 2023 (has links)
<p><a href="">This work investigates the effect of surface features such as roughness, pits, and cracks on the tribological and fatigue behavior of machine components. It comprises of three main investigations: (i) effect of roughness on non-contacting fatigue, (ii) lubricated contact fluid structure interaction (FSI) behavior in presence of surface cracks, and (iii) the equivalence between non-contacting and contacting fatigue and the effect of roughness.</a></p><p>For the first investigation, a novel microstructure-based approach was developed to model surface roughness. It used a finite element fatigue damage model to predict the effects of roughness on tensile fatigue. AISI 4130 steel specimens with different surface finishes were fabricated and tested in axial fatigue using an MTS machine. The experimental results demonstrated the detrimental effect of roughness on fatigue lives, which was predicted by the model accurately.</p><p>In the second investigation, a partitioned CFD-FEM based FSI solver was developed using Ansys Multiphysics software to model and investigate elastohydrodynamically lubricated contacts typical in gears and cylindrical roller bearings. The FSI model relaxes Reynolds assumptions, and uses Navier-Stokes equations to determine the lubricant flow and utilizes finite element method to model the structural response. The FSI model was evaluated for robustness under various operating conditions. The effect of material plasticity, subsurface features, etc. were also investigated. The model was then extended to investigate the effects of surface cracks in rolling/sliding EHL line contacts. Using CFD based approach enabled the investigation of surface cracks with inclined geometries, overcoming the limitations of standard Reynolds-based solvers. The effects of crack geometry parameters such as crack location, crack length, crack width, crack tip radius and crack orientation on fluid pressure distribution were studied. This investigation identified the crack geometries that affect the contact fatigue behavior by predicting the location and severity of stress concentrations in the material.</p><p>Finally, the relationship between contacting fatigue and non-contacting fatigue was investigated. A test rig was designed and developed to simulate rolling contact fatigue (RCF) surface damage. Experimental investigation revealed that the RCF surface damage stress-life (SN) results can be predicted using torsional fatigue results 10 times faster. A computational contact mechanics model was developed to incorporate the effect of roughness in this prediction, and corroborated against experimental RCF results at different roughness levels.</p>
130

USE OF TRIAXIAL TESTING TO OBTAIN THE SHEAR FAILURE SURFACE IN THE MODIFIED DRUCKER-PRAGER CAP MODEL

Elizabeth Carol Foesch (18005644) 23 February 2024 (has links)
<p dir="ltr">Biorefineries rely on compression feed screws to transport biomass for biofuel production in chemical reactors. However, flowability issues within these feedscrews often lead to production downtime, impacting profitability. Modeling biomass flow within the feedscrews is crucial to optimize processing parameters like torque and speed, reducing downtime. Biomass is a non-uniform granular material which faces flowability issues. The problems in flowability is influenced by factors such as particle size, moisture content, material composition, and processing methods. Identifying key parameters that can influence the material behavior is vital to minimize production downtimes. Feedscrews operate under high pressures which makes obtaining accurate material parameters at these high pressures challenging. Many methods used within the pharmaceutical industry to obtain material parameters are unable to reach the larger pressures that the material experiences within the feedscrew. However, Triaxial testing can be used to test the material at the high pressure of interest. Triaxial testing has been used within the civil engineering field to test granular materials such as soils, sand, and rocks. The Finite Element Method (FEM) using a continuum model is used for modeling systems with a large number of particles. The modified Drucker-Prager Cap (mDPC) continuum model is often used to capture complex material behavior, including densification and shear yielding in granular materials. This model seems well suited to capture the behaviors of biomass material. The focus of the thesis is to obtain the shear failure properties of corn stover using triaxial testing and the Drucker-Prager Cap continuum model. Simulations and experimental data are utilized to establish a criterion for identifying shear failure. While simulations depict ideal behavior of a DPC material with frictionless and frictional platens, experimental data shows trends of real-life corn stover. Simulation results effectively predict the material’s friction angle but show larger errors in estimating cohesion, potentially due to extrapolation or cohesion’s sensitivity to volumetric plastic strain. Further simulations at smaller hydrostatic unloading pressures are recommended to reduce this error. Experimental trends for shear failure seem to align with simulation trends for shear failure identification. However, the densification trends in experiments lack the clarity observed in the trends from the simulations. More triaxial experiments should be run to determine if the trends are consistent at other hydrostatic loading and unloading pressures. More than two experiments at the same hydrostatic loading pressure should also be run to estimate the shear failure line to obtain a better estimation. Experimentally there are a number of other factors that could contribute to errors such as the estimated material diameter used to calculate Mises stress, if corrections were made for items such as the moving piston, latex membrane, and more, and how far the shear failure line is extrapolated to the vertical axis.</p>

Page generated in 0.1035 seconds