• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 176
  • 176
  • 68
  • 52
  • 47
  • 41
  • 41
  • 40
  • 31
  • 27
  • 24
  • 23
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

COMPUTATIONAL MODELING OF SKIN GROWTH TO IMPROVE TISSUE EXPANSION RECONSTRUCTION

Tianhong Han (15339766) 29 April 2023 (has links)
<p>Breast cancer affects 12.5\% of women over their life time and tissue expansion (TE) is the most common technique for breast reconstruction after mastectomy. However, the rate of complications with TE can be as high as 15\%. Even though the first documented case of TE happened in 1957, there has yet to be a standardized procedure established due to the variations among patients and the TE protocols are currently designed based on surgeon's experience. There are several studies of computational and theoretical framework modeling skin growth in TE but these tools are not used in the clinical setting. This dissertation focuses on bridging the gap between the already existing skin growth modeling efforts and it's potential application in the clinical setting.</p> <p><br></p> <p>We started with calibrating a skin growth model based on porcine skin expansions data. We built a predictive finite element model of tissue expansion. Two types of model were tested, isotropic and anisotropic models. Calibration was done in a probabilistic framework, allowing us to capture the inherent biological uncertainty of living tissue. We hypothesized that the skin growth rate was proportional to stretch. Indeed, the Bayesian calibration process confirmed that this conceptual model best explained the data. </p> <p><br></p> <p>Although the initial model described the macroscale response, it did not consider any activity on the cellular level. To account for the underlying cellular mechanisms at the microscopic scale, we have established a new system of differential equations that describe the dynamics of key mechanosensing pathways that we observed to be activated in the porcine model. We calibrated the parameters of the new model based on porcine skin data. The refined model is still able to reproduce the observed macroscale changes in tissue growth, but now based on mechanistic knowledge of the cell mechanobiology.  </p> <p><br></p> <p>Lastly, we demonstrated how our skin growth model can be used in a clinical setting. We created TE simulations matching the protocol used in human patients and compared the results with clinical data with good agreement. Then we established a personalized model built from 3D scans of a patient unique geometry. We verified our model by comparing the skin growth area with the area of the skin harvested in the procedure, again with good agreement.</p> <p><br></p> <p>Our work shows that skin growth modeling can be a powerful tool to aid surgeons design TE procedures before they are actually performed. The simulations can help with optimizing the protocol to guarantee the correct amount of skin is growth in the shortest time possible without subjecting the skin to deformations that can compromise the procedure.</p>
92

Theoretical and Experimental Analysis of Topological Elastic Waveguides

Ting-Wei Liu (12472668) 06 December 2022 (has links)
<p>The capability of manipulation of the flow of mechanical energy in the form of mechanical waves (including acoustic and elastic waves) has always been a challenge and a critical part in various areas of engineering. The recent advances in topological acoustic/elastic metamaterials certainly open a new pathway to the manipulation of mechanical waves, especially for the novel scattering-immune wave-guiding capability, even in the presence of defects, disorders or sharp bends along the waveguide. In this Dissertation, the theoretical background and experimental evidence of various types of elastic-wave topological metamaterials including analogues to 2D quantum valley Hall effect (QVHE) materials, 2D quantum spin Hall effect (QSHE) topological insulators are presented. First, the formulation the elastic-wave analogue to QVHE materials in a general continuous elastic phononic structure (not limited to local resonant lattices, filling the gap in the literature) is proposed, and a strategy using pressurized cells to actively control the phononic lattice is presented. By finite prestrain and geometric nonlinear effect, the space inversion symmetry of the original hexagonal lattice is broken, resulting in distinct QVHE phases (characterized by valley Chern numbers) in lattice domains with opposite pressurization. With such mechanism, the edge-state path, i.e., the domain wall connecting lattices with distinct QVHE phases, can be real-time configured. Further more, edge states with tunable frequency-wavenumber dispersion can be created at the external boundaries of the lattice by appropriate pressurization of the outermost cells. An aluminum reticular sheet built with water-jet cutting is machined in the pre-deformed pattern with a Z-shape domain wall at the center, which spatially divides the sheet into two domains with opposite QVHE phases. Using piezoelectric transducers and laser Doppler vibrometry, the measured harmonic and transient responses confirm the back-scattering-immunity of the topological edge states, and the frequency-wavenumber dispersion matches the numerical prediction. A strategy is proposed for unidirectionally generating edge states along the domain wall using two off-phase transducers, which is also experimentally demonstrated. For elastic-wave analogue to QSHE topological insulators, we focus on the ``zone-folding'' method and propose a honeycomb 2D elastic beam network with periodically altered thickness with a generalized Kekule distortion pattern. Such framework provides a parametric space with exhaustive control in the topological phase diagram of waves in the lattice compared to earlier works in the literature. The effective Hamiltonian as well as the characterized topological phase are gauge dependent, particularly they change with different reference frames. This lead to ambiguity in the topological phase of such phononic crystal. Based on this argument, it is predicted that edge states could exist at a dislocation interface connecting two piece of phononic structures of the same pattern with relative displacement. Following the same idea, but considering the available fabrication options, a phononic plate with honeycomb groove pattern engraved on both sides is built, which the depth varied according to the Kekule pattern. With proper tuning of the parameters, it realizes an analogue to the QSHE topological insulator. With <em>ab initio</em> calculation of the Berry curvature (without involving any approximations such as the perturbative approach), a new topological invariant <em>local topological charge</em> is defined and evaluated as the counterpart of the Z<sub>2</sub> invariant in the classical-wave-zone-folding analogue. The local topological charge has intrinsic ambiguity and its value depends on the selected reference frame. However, its <em>change </em>according to changes in the parameters, under a consistent reference frame, is well-defined. Given the fact that shifting the reference frame by certain fractions of a lattice constant was equivalent to changing one of the parameters by a certain amount, it also lead to a well-defined change in the local topological charge, which indicates topological phase transition, and one can predict the existence of edge states at the displacement-dislocation interface between two neighboring lattices having the same pattern up to a rigid-body shifting. The phononic plate is machined by a CNC mill, and the experiment is carried out using piezoelectric transducers and laser Doppler vibrometry, which confirms the existence and robustness of the topological edge states at such dislocation interface connecting identical pattern, which was unprecedented in both quantum and classical systems. The final part of this Dissertation focuses on creating classical mechanical analogues to the 1D Kitaev superconducting model and Majorana-like bound states aimed at future acoustic-wave based computation.</p>
93

Global buckling of subsea pipelines with DEH cable / Global buckling av undervattensrörledningar med DEH kabel

Meurk, Anders January 2022 (has links)
Hydrates, wax, and other fluids forms in cold subsea pipelines which restrict flow of petroleum products during operation. This thesis analyses the global buckling behaviour of subsea pipelines with Direct Electric Heating cables (DEH) through a combination of analytical and FEM simulations. A subsea pipeline with an attached DEH cable has limited impact on the pipelines initial global buckling behaviour. The DEH cable holds back and reduces the buckle size. Strap distance and cable rotational location has very limited impact on buckling behaviour. Analytical and FEM model has in places low convergence, this is likely due to limitations in the models. / Hydrater, vax, och andra fluider formas i kalla undervattensrörledningar som begränsar flödet av petroleumprodukter i drift. Detta examensarbete analyserar global buckling av undervattensrörledningar med Direct Electric Heating (DEH) kabel med en kombination av analytisk och FEM simuleringar. En undervattensrörledning med tillhörande DEH kabel har begränsad påverkan på en rörlednings initiala globala bucklingsbeteende. DEH kabeln håller tillbaka och reducerar bucklingsstorleken. Avstånd mellan remmar och kabelns läge har mycket begränsad påverkan på bucklingsbeteendet. Den analytiska och FEM‐modellen har i vissa fall låg konvergens, troligen på grund av begränsningar i modellerna.
94

Rotor Dynamic Modeling of Hydropower Rotors by 3D-Finite Element Analysis

Pääjärvi, Simon January 2022 (has links)
By using the rotor dynamic capabilities of Simcenter Nastran Rotordynamics, an eigenvalue analysis of 3D-finite element models of the Jeffcott rotor and the overhung rotor were conducted and compared to the results with beam-based, lumped parameter models. The first two critical speeds of the Jeffcott rotor were estimated with variations of 3.9 and 6.4%. The first three critical speeds of the overhung rotor were estimated with 8.5, 6.7 and 6.5% variations, respectively. The Jeffcott rotor was also analysed with different element configurations: Solid elements, axisymmetric Fourier elements, beam/solids and all beam elements. The Fourier elements were the most appropriate option for axisymmetric rotors regarding computational time and accuracy. Tilting pad journal bearings were simulated and validated against data from Vattenfall's facilities in Älvkarleby, where a vertical rotor is connected to two four-pad tilting pad journal bearings. The bearing formulation was defined in a Fortran based subroutine, which acquires the rotor's speed and position to supply a bearing load vector in Simcenter Nastran's transient solver. The experimental rig was also modelled to include the rotor/stator interaction. The force and displacement orbits at the bearings were replicated adequately concerning experimental data, where a maximum deviation of 20.8% and 9.8% were observed for the forces in x and y-directions.  A 3D-finite element model and a beam based finite element model were compared for an actual hydropower unit, which aimed to investigate the mode extraction procedure and how high mass, elastic rotor components influence the system's dynamics. Consistent rotor modes were identified at frequencies within 15% deviation, where the maximum deviation occurred in the upper range frequency pairs. Convergence between the models was observed for the static, lower range frequencies when considering a rigid generator rotor in the 3D finite element model. The outcome is consistent with the model assumptions and underlines that the beam based model cannot capture specific contributions from elastic rotor components. 3D-finite element analysis is a viable option when considering non-axisymmetric and complex rotors. High mass, non-rigid components must be analysed  in this manner as their dynamic contributions may not be captured with other approaches. Intricate and non-rigid supporting structures are also suitable for 3D modelling to properly reflect the stator-rotor interaction. It is a delicate matter to pinpoint when these conditions occur, and modelling decisions must be therefore be substantiated by simulations and experimental validation.
95

Selective Deposition of Conductive Inks Onto Rough Polymer Composites Using Drop-On-Demand Inkjet Printing

Eric Jacob Williamson (17060409) 20 February 2024 (has links)
<p dir="ltr">Inkjet printing allows for rapid prototyping and design iteration that traditional printing methods do not. The use of inkjet printing for electronic devices has seen increased use in recent years owing to its high precision and ability to quickly test new devices. However, nearly all of this work has been done on smooth substrates with surface roughnesses on the nano scale. To further explore the capabilities of inkjet printing on rough surfaces, electrically conductive ink was printed onto a variety of solids-loaded polymer composite substrates using varied filler particle sizes with surface roughnesses on the micron scale. This work examines the necessary parameters required to print on these rough surfaces and characterizes the electrical properties of deposited ink. Electrical conductivity was demonstrated on surfaces across five distinct substrates using varied particle sizes. Further, two functional devices in the form of a heater and a strain gauge were printed and tested on these substrates. These devices showed comparable performance to commercially available devices. These findings offer improved ability to use inkjet technology on a variety of substrates and have implications in multiple fields. This demonstration of basic conductivity and advanced functionality shows the potential to continue development of complex devices and integrate them into new substrates. The optimization of printing algorithms on these rough surfaces also has significant potential to improve printability on rough surfaces and further expand capabilities.</p>
96

High Performance Thermal Barrier Coatings On Additively Manufactured Nickel Base Superalloy Substrates

Tejesh Charles Dube (8812424) 19 February 2024 (has links)
<p>Thermal barrier coatings (TBCs) made of low-thermal-conductivity ceramic topcoat, metallic bond coat and metallic substrate, have been extensively used in gas turbine engines for thermal protection. Recently, additive manufacturing (AM) or 3D printing techniques have emerged as promising manufacturing techniques to fabricate engine components. The motivation of the thesis is that currently, application of TBCs on AM’ed metallic substrate is still in its infancy, which hinders the realization of its full potential.</p> <p>The goal of this thesis is to understand the processing-structure-property relationship in thermal barrier coating deposited on AM’ed superalloys.</p> <p>The APS method is used to deposit 7YSZ as the topcoat and NiCrAlY as the bond coat on TruForm 718 substrates fabricated using the direct metal laser sintering (DMLS) method. For comparison, another TBC system with the same topcoat and bond coat is deposited using APS on wrought 718 substrates. For thermomechanical property characterizations, thermal cycling, thermal shock (TS) and jet engine thermal shock (JETS) tests are performed for both TBC systems to evaluate thermal durability. Microhardness and elastic modulus at each layer and respective interfaces are also evaluated for both systems. Additionally, the microstructure and elemental composition are thoroughly studied to understand the cause for better performance of one system over the other.</p> <p>Both TBC systems showed similar performance during the thermal cycling and JETS test but TBC systems with AM substrates showed enhanced thermal durability especially in the case of the more aggressive thermal shock test. The TBC sample with AM substrate failed after 105 thermal shock cycles whereas the one with wrought substrate endured a maximum of 85 cycles after which it suffered topcoat delamination. The AM substrates also demonstrated an overall higher microhardness and elastic modulus except for post thermal cycling condition where it slightly underperformed. This study successfully demonstrated the use of AM built substrates for an improved TBC system and validated the enhanced thermal durability and mechanical properties of such a system.</p> <p>A modified YSZ TBC architecture with an intermediate Ti3C2 MXene layer is proposed to improve the interfacial adhesion at the topcoat/bond coat interface to improve the thermal durability of YSZ</p> <p>12</p> <p>TBC systems. First principles calculations are conducted to study the interfacial adhesion energy in the modified and conventional YSZ TBC systems. The results show enhanced adhesion at the bond coat/MXene interface. At the topcoat/MXene interface, the adhesion energy is similar to the adhesion energy between the topcoat and bond coat in a conventional YSZ TBC system.</p> <p>An alternative route is proposed for the fabrication of YSZ TBC on nickel base superalloy substrates by using the SPS technology. SPS offers a one-step fabrication process with faster production time and reduced production cost since all the layers of the TBC system are fabricated simultaneously. Two different TBC systems are processed using the same heating protocol. The first system is a conventional TBC system with 8YSZ topcoat, NiCoCrAlY bond coat and nickel base superalloy substrate. The second system is similar to the first but with an addition of Ti3C2 MXene layer between the topcoat and the bond coat. Based on the first principles study, addition of Ti3C2 layer enhances the adhesion strength of the topcoat/bond coat interface, an area which is highly susceptible to spallation. Further tests such as thermal cycling and thermal shock along with the evaluation of mechanical properties would be carried out for these samples in future studies to support our hypothesis.</p>
97

Strength assessment of rig foundations for a sailing car carrier / Utvärdering av styrkan hos riggfundament för ett seglande biltransportfartyg

Rapaport, Alfred January 2020 (has links)
The wPCC project (wind powered car carrier) is carried out by Wallenius Marine, KTH Royal Institute of Technology and SSPA Sweden. By developing a car carrier mainly propelled by the wind, the emissions are estimated to be reduced by up to 90 %. This thesis deals with the structural aspects of the design. Specifically, the interface between the sail rigs and hull is considered. Different rig foundation concepts should be developed and compared to each other. The objective is to focus on characteristics such as stress levels, relevant failure mechanisms and cargo capacity. Scantling of merchant vessels is to a large extent governed by rules issued by classification societies such as DNV-GL and Lloyd’s Register. While traditional car carriers are covered to a great extent in terms of scantling loads and structural requirements, there exists a regulatory gap for vessels powered by the wind. Four different concepts for the rig foundations are developed. They are all using transverse and longitudinal bulkheads for transferring loads from the rigs to adjacent hull structure. The foundation concepts are then evaluated by creating a finite element model representing the midship section of the ship. The model includes three rig foundations and generally follows the preliminary scantlings of the wPCC. For reference, a model without rigs is also created. The bow and stern of the vessel are excluded in the model and some other model simplifications are also made. The accuracy of stress levels is thus not sufficient for final sizing of the conceptual solutions but the qualitative differences should be valid. The focus of the study is thus how the four concepts compare with respect to each other. The main strength of the chosen approach is that it allows for comparison of multiple concepts. Had a more advanced approach been chosen, the results would likely prove to be of a higher accuracy but then at the expense of modeling effort and time. The transverse strength is deemed being critical for multiple deck car carriers such as the wPCC. Racking, the transverse shearing of the ship, is a common problem which is covered in detail by class guidelines. These loads, based on rule calculations, are therefore included in the analysis. The rig loads are in turn based on assumptions regarding parameters such as the wing geometry and rig weight. The results of the finite element models are evaluated at several critical areas, chosen as to represent different aspects of the structural response. Results from buckling analyses as well as characteristics such as cargo capacity are also recorded as to broaden the comparison. The different results represent criteria which the evaluation process is based on. Each criterion is given a weight to account for its importance. The Pugh method is then applied, yielding a score for each of the evaluated concepts. The total score consequently depends on the chosen weights. Regardless, the study clearly presents which concepts that are interesting and which should be discarded. Interestingly, the best performing concept turns out to be highly unconventional compared to supporting structures used in traditional shipbuilding. For the future, the rig loads as well as additional load cases should be addressed. Failure mechanisms such as fatigue will likely pose a problem, and at some stage a thorough, full scale finite element model should be created in order to accurately predict the response of the entire hull structure. However, the author believes that the presented study serves as a draft in identifying key aspects to consider when introducing wind propulsion in commercial shipping. / wPCC-projektet (wind powered car carrier) bedrivs gemensamt av Wallenius Marine, Kungliga Tekniska Högskolan och SSPA Sweden. Genom att utveckla ett vinddrivet biltransportfartyg beräknas utsläppen minska med upp till 90 %. Detta examensarbete avhandlar delar av fartygsstrukturen med fokus på hållfasthet. Mer specifikt undersöks gränssnittet mellan segelriggarna och skrovet. Olika koncept för riggfundament utvecklas och jämförs med fokus på karaktäristika så som spänningar, brottmekanismer och lastkapacitet. Dimensionering av kommersiella fartyg styrs till stor del av regler utfärdade av klassällskap som DNV-GL och Lloyd’s Register. Medan traditionella biltransportfartyg omfattas av ett antal krav på dimensionerande laster och strukturkrav saknas det ordentliga regelverk för vinddrivna fartyg. Fyra olika koncept för riggfundamenten utvecklas. Samtliga använder sig av transversella och longitudinella skott för lastöverföring från riggarna till omgivande skrovstruktur. Koncepten utvärderas sedan genom att skapa en finita element-modell som representerar midskeppssektionen av fartyget. Modellen inkluderar tre riggfundament och följer till stor del preliminära ritningar av wPCC-fartyget. Som referens skapas även en modell utan riggar. Fören och aktern exkluderas i modellen utöver ett antal andra förenklingar. Precisionen på spänningsnivåer är därmed inte tillräcklig för att bestämma slutgiltiga dimensioner på koncepten men de kvalitativa skillnaderna koncepten emellan bör vara välgrundade. Studiens fokus är därför hur de fyra koncepten jämförs mot varandra. Den främsta fördelen med det valda tillvägagångssättet är att det möjliggör jämförandet av flera koncept. Om ett mer avancerat tillvägagångssätt använts skulle sannolikt resultaten vara mer precisa, men då till en högre kostnad i form av modelleringsarbete och tidsåtgång. Tvärskeppsstyrkan bedöms vara kritisk för biltransportfartyg med flera däck som wPCC-fartyget. Så kallad racking, transversell skjuvning av fartyget, är ett vanligt problem som avhandlas i detalj av klassregler. Rackinglaster baserade på klassregler inkluderas därför i analysen. Rigglasterna är i sin tur baserade på antaganden om parametrar som vinggeometri och riggvikt. Resultaten från finita element-modellerna utvärderas vid ett flertal kritiska områden valda för att representera olika aspekter av hur strukturen svarar på belastningarna. Resultat från bucklingsanalyser såväl som karaktäristika så som lastförmåga inkluderas också för att bredda jämförelserna. De olika resultaten representerar kriterier som utvärderingsprocessen baseras på. Varje kriterium ges en vikt för att ta hänsyn till dess betydelse. Pugh-metoden används sedan, vilket ger en poängsumma för varje koncept. Varje poängsumma beror därmed på valda vikter. Oavsett visar studien tydligt vilka koncept som är av intresse och vilka som kan förkastas. Intressant nog visar studien att konceptet med högst poäng är högst okonventionellt jämfört med bärande strukturer som används inom traditionell skeppsbyggnad. Inför framtiden bör riggbelastningarna såväl som ytterligare lastfall beaktas. Brottmekanismer som utmattning kommer sannolikt att utgöra problem och vid något tillfälle bör en stor, fullskalig finita element-modell skapas för att med högre precision förutse hur hela skrovstrukturen svarar på belastningarna. Författaren bedömer oavsett att denna studie fungerar som ett utkast till att identifiera nyckelaspekter vid introduktion av vind som framdrivning för kommersiell sjöfart.
98

ADVANCING INTEGRAL NONLOCAL ELASTICITY VIA FRACTIONAL CALCULUS: THEORY, MODELING, AND APPLICATIONS

Wei Ding (18423237) 24 April 2024 (has links)
<p dir="ltr">The continuous advancements in material science and manufacturing engineering have revolutionized the material design and fabrication techniques therefore drastically accelerating the development of complex structured materials. These novel materials, such as micro/nano-structures, composites, porous media, and metamaterials, have found important applications in the most diverse fields including, but not limited to, micro/nano-electromechanical devices, aerospace structures, and even biological implants. Experimental and theoretical investigations have uncovered that as a result of structural and architectural complexity, many of the above-mentioned material classes exhibit non-negligible nonlocal effects (where the response of a point within the solid is affected by a collection of other distant points), that are distributed across dissimilar material scales.</p><p dir="ltr">The recognition that nonlocality can arise within various physical systems leads to a challenging scenario in solid mechanics, where the occurrence and interaction of nonlocal elastic effects need to be taken into account. Despite the rapidly growing popularity of nonlocal elasticity, existing modeling approaches primarily been concerned with the most simplified form of nonlocality (such as low-dimensional, isotropic, and homogeneous nonlocal problems), which are often inadequate to identify the nonlocal phenomena characterizing real-world problems. Further limitations of existing approaches also include the inability to achieve a mathematically well-posed theoretical and physically consistent framework for nonlocal elasticity, as well as the absence of numerical approaches to achieving efficient and accurate nonlocal simulations. </p><p dir="ltr">The above discussion identifies the significance of developing theoretical and numerical methodologies capable of capturing the effect of nonlocal elastic behavior. In order to address these technical limitations, this dissertation develops an advanced continuum mechanics-based approach to nonlocal elasticity by using fractional calculus - the calculus of integrals and derivatives of arbitrary real or even complex order. Owing to the differ-integral definition, fractional operators automatically possess unusual characteristics such as memory effects, nonlocality, and multiscale capabilities, that make fractional operators mathematically advantageous and also physically interpretable to develop advanced nonlocal elasticity theories. In an effort to leverage the unique nonlocal features and the mathematical properties of fractional operators, this dissertation develops a generalized theoretical framework for fractional-order nonlocal elasticity by implementing force-flux-based fractional-order nonlocal constitutive relations. In contrast to the class of existing nonlocal approaches, the proposed fractional-order approach exhibits significant modeling advantages in both mathematical and physical perspectives: on the one hand, the mathematical framework only involves nonlocal formulations in stress-strain constitutive relationships, hence allowing extensions (by incorporating advanced fractional operator definitions) to model more complex physical processes, such as, for example, anisotropic and heterogeneous nonlocal effects. On the other hand, the nonlocal effects characterized by force-flux fractional-order formulations can be physically interpreted as long-range elastic spring forces. These advantages grant the fractional-order nonlocal elasticity theory the ability not only to capture complex nonlocal effects, but more remarkably, to bridge gaps between mathematical formulations and nonlocal physics in real-world problems.</p><p>An efficient nonlocal multimesh finite element method is then developed to solve partial integro-differential governing equations in the fractional-order nonlocal elasticity to further enable nonlocal simulations as well as practical applications. The most remarkable consequence of this numerical method is the mesh-decoupling technique. By separating the numerical discretization and approximation between the weak-form integral and nonlocal integral, this approach surpasses the limitations of existing nonlocal algorithms and achieves both accurate and efficient finite element solutions. Several applications are conducted to verify the effectiveness of the proposed fractional-order nonlocal theory and the associated multimesh finite element method in simulating nonlocal problems. By considering problems with increasing complexity ranging from one-dimensional to three-dimensional problems, from isotropic to anisotropic problems, and from homogeneous to heterogeneous nonlocality, these applications have demonstrated the effectiveness and robustness of the theory and numerical approach, and further highlighted their potential to effectively model a wider range of nonlocal problems encountered in real-world applications.</p>
99

Cardiac mechanical model personalisation and its clinical applications

Xi, Jiahe January 2013 (has links)
An increasingly important research area within the field of cardiac modelling is the development and study of methods of model-based parameter estimation from clinical measurements of cardiac function. This provides a powerful approach for the quantification of cardiac function, with the potential to ultimately lead to the improved stratification and treatment of individuals with pathological myocardial mechanics. In particular, the diastolic function (i.e., blood filling) of left ventricle (LV) is affected by its capacity for relaxation, or the decay in residual active tension (AT) whose inhibition limits the relaxation of the LV chamber, which in turn affects its compliance (or its reciprocal, stiffness). The clinical determination of these two factors, corresponding to the diastolic residual AT and passive constitutive parameters (stiffness) in the cardiac mechanical model, is thus essential for assessing LV diastolic function. However these parameters are difficult to be assessed in vivo, and the traditional criterion to diagnose diastolic dysfunction is subject to many limitations and controversies. In this context, the objective of this study is to develop model-based applicable methodologies to estimate in vivo, from 4D imaging measurements and LV cavity pressure recordings, these clinically relevant parameters (passive stiffness and active diastolic residual tension) in computational cardiac mechanical models, which enable the quantification of key clinical indices characterising cardiac diastolic dysfunction. Firstly, a sequential data assimilation framework has been developed, covering various types of existing Kalman filters, outlined in chapter 3. Based on these developments, chapter 4 demonstrates that the novel reduced-order unscented Kalman filter can accurately retrieve the homogeneous and regionally varying constitutive parameters from the synthetic noisy motion measurements. This work has been published in Xi et al. 2011a. Secondly, this thesis has investigated the development of methods that can be applied to clinical practise, which has, in turn, introduced additional difficulties and opportunities. This thesis has presented the first study, to our best knowledge, in literature estimating human constitutive parameters using clinical data, and demonstrated, for the first time, that while an end-diastolic MR measurement does not constrain the mechanical parameters uniquely, it does provide a potentially robust indicator of myocardial stiffness. This work has been published in Xi et al. 2011b. However, an unresolved issue in patients with diastolic dysfunction is that the estimation of myocardial stiffness cannot be decoupled from diastolic residual AT because of the impaired ventricular relaxation during diastole. To further address this problem, chapter 6 presents the first study to estimate diastolic parameters of the left ventricle (LV) from cine and tagged MRI measurements and LV cavity pressure recordings, separating the passive myocardial constitutive properties and diastolic residual AT. We apply this framework to three clinical cases, and the results show that the estimated constitutive parameters and residual active tension appear to be a promising candidate to delineate healthy and pathological cases. This work has been published in Xi et al. 2012a. Nevertheless, the need to invasively acquire LV pressure measurement limits the wide application of this approach. Chapter 7 addresses this issue by analysing the feasibility of using two kinds of non-invasively available pressure measurements for the purpose of inverse parameter estimation. The work has been submitted for publication in Xi et al. 2012b.
100

The response of submerged structures to underwater blast

Schiffer, Andreas January 2013 (has links)
The response of submerged structures subject to loading by underwater blast waves is governed by complex interactions between the moving or deforming structure and the surrounding fluid and these phenomena need to be thoroughly understood in order to design structural components against underwater blast. This thesis has addressed the response of simple structural systems to blast loading in shallow or deep water environment. Analytical models have been developed to examine the one-dimensional response of both water-backed and air-backed submerged rigid plates, supported by linear springs and loaded by underwater shock waves. Cavitation phenomena as well as the effect of initial static fluid pressure are explicitly included in the models and their predictions were found in excellent agreement with detailed FE simulations. Then, a novel experimental apparatus has been developed, to reproduce controlled blast loading in initially pressurised liquids. It consists of a transparent water shock tube and allows observing the structural response as well as the propagation of cavitation fronts initiated by fluid-structure interaction in a blast event. This experimental technique was then employed to explore the one-dimensional response of monolithic plates, sandwich panels and double-walled structures subject to loading by underwater shock waves. The performed experiments provide great visual insight into the cavitation process and the experimental measurements were found to be in good agreement with analytical predictions and dynamic FE results. Finally, underwater blast loading of circular elastic plates has been investigated by theoretically modelling the main phenomena of dynamic plate deformation and fluid-structure interaction. In addition, underwater shock experiments have been performed on circular composite plates and the obtained measurements were found in good correlation with the corresponding analytical predictions. The validated analytical models were then used to determine the optimal designs of circular elastic plates which maximise the resistance to underwater blast.

Page generated in 0.0614 seconds