• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 15
  • 9
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 280
  • 280
  • 280
  • 280
  • 64
  • 51
  • 35
  • 33
  • 29
  • 29
  • 29
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Effects of electrode microstructure and electrolyte parameters on intermediate temperature solid oxide fuel cell (ITSOFC) performance

Naimaster, Edward J. 01 January 2009 (has links)
In this study, the effects of electrode microstructure and electrolyte parameters on intermediate temperature solid oxide fuel cell (ITSOFC) performance were investigated using a one-dimensional SOFC model from the Pacific Northwest National Laboratory (PNNL). After a brief review of the fundamental SOFC operating processes and a literature review incorporating more advanced SOFC topics, such as electrode microstructure modeling and mixed ionic and electronic (MIEC) composite cathodes, it was determined from the PNNL benchmark results that the dominating ITSOFC losses were caused from the activation and Ohmic overpotentials. The activation overpotential was investigated through the exchange current density term, which is dependent on the cathode activation energy, the cathode porosity, and the pore size and grain size at the cathode triple phase boundary (TPB). The cathode pore size, grain size, and porosity were not integrated in the PNNL model, therefore, an analytical solution for exchange current density from Deng and Petric (2005) was utilized to optimize their effects on performance. The Ohmic loss was determined to be entirely dependent on the electrolyte ionic conductivity, and an optimal value for this conductivity was determined. Simultaneous optimization of the above parametric evaluations led to a 388 % increase in performance from the PNNL benchmark case at 600 °C. Although this was deemed successful for this project, future research should be focused on numerically quantifying and modeling the electrode microstructure in two and·three-dimensions for more accurate results, as the electrode microstructure may be highly multi-dimensional in nature.
182

MECHANICAL PROPERTIES OF Sc₀․₁Ce₀․₀₁Zr₀․₈₉O₂ ELECTROLYTE MATERIAL FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

Lim, Wendy 2009 December 1900 (has links)
Scandia doped zirconia has been considered a candidate for electrolyte material in intermediate temperature Solid Oxide Fuel Cells (SOFCs) due to its high ionic conductivity, chemical stability and good electrochemical performance. The aim of this study is to determine the mechanical properties of SCZ, ie. zirconia (ZrO₂) doped with Scandia (Sc₂O₃) and small amount of ceria (CeO₂) that are important for reliability and durability of the components manufactured from SCZ. The SCZ was prepared from powder by uniaxiall cold pressing at subsequent sintering at 1550 ºC for 4 hours. The density and porosity of the sintered samples was measured following the ASTM Standard C20-00 for alcohol immersion method. A pure cubic phase of SCZ sample was identified by X-ray diffraction (XRD) at room temperature. Quantitative compositional analyses for Zr, Sc, Ce, Hf and Ti were carried out on a Cameca SX50 electron microprobe with wavelength-dispersive spectroscopy (WDS) and energy-dispersive spectroscopy (EDS). Scanning Electron Microscopy (SEM) images were acquired using both secondary electron (SE) and back-scattered electron (BSE) detectors. WDS and EDS analysis also revealed that Zr, Sc, Ce, Hf and Ti are relatively homogeneously distributed in the structure. The average grain size of sintered SCZ samples was measured to be 4 μm. Thermal expansion at different temperatures for the SCZ ceramic was determined using Thermal Mechanical Analyzer, and the instantaneous Coefficient of Thermal Expansion (CTE) was found to be 8.726х10⁻⁶ 1/°C in the in 25-400 °C temperature range. CTE increases monotonically with temperature above 400 ºC to 1.16х10⁻⁵ at 890 °C, most likely as a result of thermo-chemical expansion due to an increase in oxygen vacancy concentration. Room temperature Vickers hardens of 12.5 GPa was measured at loads of 1000 g, while indentation fracture toughness was found to vary from 2.25 to 4.29 MPa m¹⁄², depending on the methodology that was used to calculate fracture toughness from the length of the median corner cracks. Elastic moduli, namely Young and shear moduli were determined using Resonance Ultrasound Spectroscopy (RUS). It was found that elastic moduli decreases with temperature in non-linear manner, with significant drop in the 300-600 °C temperature range, the same temperature range in which loss modulus determined by Dynamic Mechanical Analyzer exhibits frequency dependant peaks. The high loss modulus and significant drop in elastic moduli in that temperature regime is attributed to the relaxation of doping cation-oxygen vacancies clusters. The flexural strength in 4-point bending was measured at room temperature, 400 °C, 600 °C and 800 °C. and the results were analyzed using Weibull statistics. It was found that flexural strength changes with temperature in a sigmoidal way, with the minimum strength at around 600 °C. Non-linear decrease in strength with temperature can be traced back to the changes in elastic moduli that are caused predominately by relaxation of oxygen vacancies.
183

Characterisation of the ceria and yttria co-doped scandia zirconia, produced by an innovative sol-gel and combustion process

de Carvalho Tomás, Eduarda M. S. January 2010 (has links)
In the last decade new materials appeared that are candidates to be used as an electrolyte in a Solid Oxide Fuel Cell, SOFC. Some materials show high ionic conductivity but lack in important properties, such as mechanical stability or chemical compatibility with other materials in the fuel cell. Scandia Stabilised Zirconia, SSZ, became a possibility when the scandia price dropped with the opening of the Chinese and Russian markets. In the starting system Ce[subscript(x)]Y[subscript(0.2-x)]Sc₀.₆Zr₃.₂O[subscript(8-δ)], (0≤x≤0.2), scandia is introduced to improve conductivity and stabilise the cubic phase; yttria is introduced to fully stabilise the cubic phase and ceria to enhance conductivity lost with the introduction of yttria. The aim of this project is to develop a reliable new method to produce quality ceramics that are not strongly composition dependent, then to prepare a range of compositions and compare intrinsic properties without having to be concerned that poor sintering dominates conduction properties. This project can be divided in two sections, the first section the powder production method, the characteristics of the powders and its final products are in focus. In the second section the relation between electric characteristics and microstructure of the material is reported. In the first section, the effect of different compositions of the system Ce[subscript(x)]Y[subscript(0.2-x)]Sc₀.₆Zr₃.₂O[subscript(8-δ)], (0≤x≤0.2) is studied, in terms of structure, phase and microstructure. The nature, size and shape of the powders are discussed, and their effect on the final product. The sol-gel and combustion method gives the formation of hard agglomerates (shells), during the combustion, a wide range of grain sizes, between less than 1µm and 200 µm, and the formation of grains with non spherical shape. In this project, the sol-gel and combustion process and solid state method are also compared. In the second section of this project, AC Impedance measurements, as a function of temperature, oxygen partial pressure and time are discussed. The Arrhenius plot for all compositions shows two regions (high and low temperature) and the change of region occurs at 580 °C. At low temperatures there is a slight difference between compositions but this difference is less at high temperatures. The obtained ionic conductivity, at 350 °C, varies from 3.84×10⁻⁶ to 5.53×10⁻⁵ S/cm; at 700 °C, ionic conductivity from 0.013 to 0.044 S/cm. At low temperatures, the activation energy associated with bulk process is generally lower than grain boundary process; for example, the composition Ce₀.₁Y₀.₁Sc₀.₆Zr₃.₂O₇.₆₅ has an activation energy, for the bulk process, of 1.05 eV and an activation energy, for the grain boundary process, of 1.17 eV. For compositions with higher ceria content, activation energy, for bulk and grain boundary, have similar values. The AC impedance as function of oxygen partial pressure show that the amount of ceria introduced as an effect on the conductivity at low oxygen partial pressure. For the sample with no ceria in its composition, Y₀.₂Sc₀.₆Zr₃.₂O₇.₆₀, the conductivity does not vary significantly as the oxygen partial pressure is decreased; for oxygen partial of 0.21 atm, conductivity is 0.018 S/cm and when oxygen partial pressure is approximately 10⁻²⁴ atm conductivity is 0.018 S/cm. For the sample with a higher content of ceria, Ce₀.₁₂Y₀.₀₈Sc₀.₆Zr₃.₂O₇.₆₆, there is a decrease in conductivity while oxygen partial pressure decreases; and there is also the appearance of a semi-circle for lower oxygen partial pressures. For oxygen partial pressure approximately 0.21 atm, conductivity is 0.019 S/cm, but when oxygen partial pressure is decreased to 10⁻²⁴ atm conductivity decreases to 0.011 S/cm. AC impedance measurements as a function of annealing time at 600 °C were performed. Total conductivity is fairly stable, for all compositions, until 1800 hours but after this time, conductivity slowly decreases. Some compositions show a second semi-circle in the AC impedance spectra, either from the beginning, time equals 0 hours, or after some working hours. Here, the changes in conduction and conduction processes with time are discussed.
184

Development of alternative cathodes for intermediate temperature solid oxide fuel cells

Kim, Junghyun 05 November 2009 (has links)
text
185

Desenvolvimento de selantes vitrocerâmicos para uso em SOFC pertencentes ao sistema BAS (BaO-Al203-SiO2) modificados com B2O3 / Development of glass ceramic sealants for use in SOFC belonging to BAS (BaO-Al2O3-SiO2) system modified with B2O3

Silva, Maviael José da 25 September 2014 (has links)
O desenho planar para as células a Combustível de Óxido Sólido (SOFC) é melhor do que o tubular devido a sua maior densidade de corrente e menor custo de fabricação. No entanto, o projeto de SOFC planar requer selantes para evitar o vazamento de combustível e a mistura de gases em altas temperaturas. Os vidros e os vitrocerâmicos têm demonstrado serem os mais adequados por apresentarem boa compatibilidade com outros componentes da célula nas temperaturas de trabalho das SOFCs (700-1000°C). No presente estudo, uma série de composições pertencentes ao sistema BaO-Al2O3-SiO2 (BAS) com a adição de B2O3 foram sintetizados tomando as proporções apropriadas de cada óxido constituinte. Propôs-se melhorar este sistema utilizando-se formadores e teores relevantes de modificadores estruturais, de forma a compatibilizar tanto o desempenho térmico por meio do coeficiente de expansão térmica (CET) como a compatibilidade química com os demais componentes da célula. A originalidade deste estudo está na busca destas características em regiões de composições ainda não exploradas, localizadas dentro do triangulo de compatibilidade BS-B2S-BAS2 na região rica em bário do sistema ternário. Entre estes vidros sintetizados quatro composições (BAS-4, BAS-5, BAS-6 e BAS-7) foram escolhidas porque são as mais adequadas às solicitações termomecânicas exigidas para um material vítreo atuar como selante em SOFC. / The design for planar cells Fuel Solid Oxide (SOFC) is better than the tubular due to its higher current density and lower manufacturing cost. However, the design of planar SOFC requires sealant to prevent leakage of fuel and the mixture of gases at high temperatures. Glasses and glass-ceramics have proven to be the most suitable because they have good compatibility with the other components of the cell at working temperature (700-1000°C). In the present study, a series of compositions belonging to the BaO-Al2O3-SiO2 (BAS) system with the addition of B2O3 were synthesized having the appropriate proportions of each component oxide. It was proposed to improve this system using relevant levels of formers and structural modifiers oxides, in order to match both the thermal performance of thermal expansion coefficient (TEC) and chemical compatibility with other components of the cell. The originality of this study is to search for these characteristics in regions of compositions not yet explored, located inside the compatibility triangle BS-B2S-BAS2 at the barium rich part of the ternary diagram. Among the synthesized glasses four batch compositions (BAS-4, BAS-5, 6-BAS, BAS-7) were chosen because best matched the thermo-mechanical required for a glassy material to act as SOFCs sealant.
186

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
187

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
188

Surface Modification of a Doped BaCeO3 to Function as an Electrolyte and as an Anode for SOFCs

Sano, Mitsuru, Hibino, Takashi, Tomita, Atsuko January 2005 (has links)
No description available.
189

Radiative and transient thermal modeling of solid oxide fuel cells

Damm, David L. 02 December 2005 (has links)
Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) is a major obstacle on the path to bringing this technology to commercial viability. The probability of material degradation and failure in SOFCs depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict and manage the temperature fields within the stack, especially near the interfaces. In this work we consider three effects in detail. First, we analyze radiative heat transfer effects within the semi-transparent solid electrolyte and compared them to thermal conduction. We also, present the modeling approach for calculation of surface-to-surface exchange within the flow channels and from the stack to the environment. The simplifying assumptions are identified and their carefully justified range of applicability to the problem at hand is established. This allows thermal radiation effects to be properly included in overall thermal modeling efforts with the minimum computational expense requirement. Second, we developed a series of reduced-order models for the transient heating and cooling of a cell, leading to a framework for optimization of these processes. The optimal design is one that minimizes heating time while maintaining thermal gradients below an allowable threshold. To this end, we formulated reduced order models (validated by rigorous CFD simulations) that yield simple algebraic design rules for predicting maximum thermal gradients and heating time requirements. Several governing dimensionless parameters and time scales were identified that shed light on the essential physics of the process. Finally, an analysis was performed to assess the degree of local thermal non-equilibrium (LTNE) within porous SOFC electrodes, and through a simple scaling analysis we discovered the parameter that gives an estimate of the magnitude of LTNE effects. We conclude that because of efficient heat transfer between the solid and gas in the microscale pores of the electrodes, the temperature difference between gas and solid is often negligible. However, if local variations in current density are significant, the LTNE effects may become significant and should be considered.
190

Solid Oxide Cell Constriction Resistance Effects

Nelson, George Joseph 12 April 2006 (has links)
Solid oxide cells are best known in the energy sector as novel power generation devices through solid oxide fuel cells (SOFCs), which enable the direct conversion of chemical energy to electrical energy and result in high efficiency power generation. However, solid oxide electrolysis cells (SOECs) are receiving increased attention as a hydrogen production technology through high temperature electrolysis applications. The development of higher fidelity methods for modeling transport phenomena within solid oxide cells is necessary for the advancement of these key technologies. The proposed thesis analyzes the increased transport path lengths caused by constriction resistance effects in prevalent solid oxide cell designs. Such effects are so named because they arise from reductions in active transport area. Constriction resistance effects of SOFC geometry on continuum level mass and electronic transport through SOFC anodes are simulated. These effects are explored via analytic solutions of the Laplace equation with model verification achieved by computational methods such as finite element analysis (FEA). Parametric studies of cell geometry and fuel stream composition are performed based upon the models developed. These studies reveal a competition of losses present between mass and electronic transport losses and demonstrate the benefits of smaller SOFC unit cell geometry. Furthermore, the models developed for SOFC transport phenomena are applied toward the analysis of SOECs. The resulting parametric studies demonstrate that geometric configurations that demonstrate enhanced performance within SOFC operation also demonstrate enhanced performance within SOEC operation. Secondarily, the electrochemical degradation of SOFCs is explored with respect to delamination cracking phenomena about and within the critical electrolyte-anode interface. For thin electrolytes, constriction resistance effects may lead to the loss of electro-active area at both anode-electrolyte and cathode-electrolyte interfaces. This effect (referred to as masking) results in regions of unutilized electrolyte cross-sectional area, which can be a critical performance hindrance. Again analytic and computational means are employed in analyzing such degradation issues.

Page generated in 0.1339 seconds