Spelling suggestions: "subject:"polioxide fuel cells"" "subject:"polioxide fuel wells""
221 |
The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal SyngasBurnette, David D. January 2007 (has links)
No description available.
|
222 |
Development of Porous Metal-supported Solid Oxide Fuel CellsRen, Meng 10 1900 (has links)
<p>The introduction of metal supported cells may be a key innovation in the development of solid oxide fuel cell (SOFC) technology. The objective of this study was to develop a process of co-firing the ceramic layers of a solid oxide fuel cell attached to their porous metal support. This is a major departure from the traditional fuel cell architecture where the support layer is a ceramic composite made of YSZ and NiO.</p> <p>The problems to be eliminated during the fabrication process include the warping, cracking and delamination of the cell during the co-sintering process.</p> <p>In this study, the porous metal layer was produced by the freeze tape casting process. During co-sintering, it is necessary to match the relative shrinkage between the metal and ceramic layers. Different parameters which can influence the relative shrinkage were explored, including the heating rate, sintering temperature, sintering time, cell thickness, solid loading of the green tapes, applications of wet and dry hydrogen in the sintering atmosphere, as well as a change of the electrolyte material. Specifically, GDC was tested as an alternative electrolyte to YSZ.</p> <p>Since the porous metal substrate is exposed to air during fuel cell operation, it must be protected from oxidation. Therefore, the pack cementation method was used to apply a layer of aluminum onto the metal substrate. Variables such as temperature and exposure time of the coating materials were investigated in this thesis.</p> / Master of Applied Science (MASc)
|
223 |
New electrochemical cells for energy conversion and storageNavarrete Algaba, Laura 03 March 2017 (has links)
In this thesis different materials have been developed to use them in electrochemical cells. The electrochemical cells studied can be divided into two material big groups: solids oxides and acid salts materials.
In the first group, materials to use them in electrodes for fuel cells an electrolyzer based on oxygen ion conductor electrolytes were optimized. Pertaining to this group, the influence of doping the Ba0.5Sr0.5Co0.8Fe0.2O3-d perovskite with 3% of Y, Zr and Sc in B position (ABO3-d) was checked. That optimization could reduce the polarization resistance of electrodes and improve the stability with time. Additionally, the limiting mechanisms in the oxygen reduction reaction were determined, and the influence of CO2 containing atmospheres was checked.
La2NiO4+d;, pertaining to the Ruddlesden-Popper serie, is a mixed conductor of electron and oxygen ions. This compound was doped in La position (with Nd and Pr) and in Ni position (with Co). The dopants introduced were able to produce structural change and improve the cell performance, reducing in more than one order of magnitude the La1.5Pr0.5Ni0.8Co0.2O4+d; polarization resistance respect to the reference material (La2NiO4+d).
In addition, the properties of an electrode based on the pure electronic conductor, La0.8Sr0.2MnO3-d; (LSM), were optimized. The triple phase boundary was enlarged by the addition of a second phase with ionic conductivity. That strategy made possible to reduce the electrode polarization resistance. In order to improve the oxygen reduction reaction, the addition of different catalysts by infiltration was studied. The different infiltrated oxides changed the electrochemistry properties, being the praseodymium oxide the catalyst which made possible a reduction in two orders of magnitude the electrode polarization resistance respects to the composite without infiltration. Furthermore, the efficiency of the cell working in fuel cell and electrolyzer mode was improved.
Concerning the materials selected to use as electrodes on proton conductor electrolytes, the efficiency of electrodes based on LSM was optimized by using a second phase with protonic conductivity (La5.5WO12-d) and varying the sintering temperature of the electrode. Finally, the catalytic activity of the cell was boosted by infiltrating samaria doped ceria nanoparticles, achieving higher power densities for the fuel cell.
The materials pertaining to the Ruddlesden-Popper series and studied for ionic conductor electrolytes were also used for cathodes in proton conductor fuel cells. After checking the compatibility with the electrolyte material, the influence of different electrode sintering temperatures and air containing atmospheres (dry, H2O y D2O) on the cathode performance was studied.
Finally, the electrochemical cells based on acid salts (CsH2PO4) were designed and optimized. In that way, different cell configurations were studied, enabling to obtain thin and dense electrolytes and active electrodes for the hydrogen reduction/oxidation reactions. The thickness of the electrolyte was reduced by using steel and nickel porous supports. Furthermore, an epoxy resin type was added to the electrolyte material to enhance the mechanical properties. The electrodes configuration was modified from pure electronic conductors to composite electrodes. Moreover, copper was selected as an alternative of the expensive platinum working at high operation pressures. The cells developed were able to work with high pressures and with high content of water steam in fuel cell and electrolyzer modes. / En la presente tesis doctoral se han desarrollado materiales para su uso en celdas electroquímicas. Las celdas electroquímicas estudiadas, se podrían separar en dos grandes grupos: materiales de óxido sólido y sales ácidas.
En el primer grupo, se optimizaron materiales para su uso como electrodos en pilas de combustible y electrolizadores, basados en electrolitos con conducción puramente iónica. Dentro de este grupo, se comprobó la influencia de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d, con un 3% de Y, Zr y Sc en la posición B (ABO3-d). Esta optimización llevó a la reducción de la resistencia de polarización así como a una mejora de la estabilidad con el tiempo. Así mismo, se determinaron los mecanismos limitantes en la reacción de reducción de oxígeno, y se comprobó la influencia de la presencia de CO2 en condiciones de operación.
El La2NiO4+d perteneciente a la serie de Ruddlesden-Popper, es un conductor mixto de iones oxígeno y electrones. Éste, fue dopado tanto en la posición del La (con Nd y Pr) como en la posición del Ni (con Co). Los dopantes introducidos además de producir cambios estructurales, provocaron mejoras en el rendimiento de la celda, reduciendo para alguno de ellos, como el La1.5Pr0.5Ni0.8Co0.2O4+d, en casi un orden de magnitud la resistencia de polarización del electrodo de referencia (La2NiO4+d).
De la misma manera, se optimizaron las propiedades del electrodo basado en el conductor electrónico puro La0.8Sr0.2MnO3-d (LSM). La adición de una segunda fase, con conductividad iónica, permitió aumentar los puntos triples (TPB) en los que la reacción de reducción de oxígeno tiene lugar y reducir la resistencia de polarización. Con el fin de mejorar la reacción de reducción de oxígeno, se estudió la adición de nanocatalizadores mediante la técnica de infiltración. Los diferentes óxidos infiltrados produjeron el cambio de las propiedades electroquímicas del electrodo, siendo el óxido de praseodimio el catalizador que consiguió disminuir en dos órdenes de magnitud la resistencia de polarización del composite no infiltrado. De la misma manera, la mejora de la eficiencia del electrodo infiltrado con Pr, mejoró los resultados de la celda electroquímica trabajando como pila (mayores densidades de potencia) y como electrolizador (menores voltajes).
En lo que respecta a los materiales seleccionados para su uso como electrodos en electrolitos con conductividad protónica, se optimizó la eficiencia del cátodo basado en LSM, mediante el uso de una segunda fase conductora protónica (La5.5WO12-d) y variando la temperatura de sinterización del electrodo. Finalmente, se mejoró la actividad catalítica mediante la infiltración de nanopartículas de ceria dopada con samario, produciendo mayores densidades de corriente de la pila de combustible.
Los materiales pertenecientes a la serie de Ruddlesden-Popper y usados para cátodos en pilas iónicas, fueron empleados también para cátodos en pilas protónicas. Después de comprobar que el material electrolítico (LWO) era compatible con los compuestos de la serie de Ruddlesden-Popper, se estudió la influencia de la temperatura de sinterización de los electrodos en el rendimiento, así como de la composición de la atmosfera de aire (seca, H2O y D2O).
Finalmente, se diseñó y optimizó las celdas electroquímicas basadas en sales ácidas (CsH2PO4). En este sentido, se estudiaron diferentes configuraciones de celda, que permitieran obtener un electrolito denso con el menor espesor posible y unos electrodos activos a la reacción de reducción/oxidación de hidrógeno. Se consiguió reducir el espesor del electrolito soportando la celda en discos de acero y níquel porosos. Se añadió una resina tipo epoxi al material electrolítico para aumentar sus propiedades mecánicas. De la misma manera, se cambió la configuración de los electrodos pasando por conductores electrónicos puros a electrodos compuestos por conductores / En la present tesis doctoral es van desenvolupar materials per al seu ús en cel·les electroquímiques. Les cel·les electroquímiques estudiades poden ser dividides en dos grans grups: materials d'òxid sòlid i sals àcides.
En el primer grup, es van optimitzar materials per al seu ús com a elèctrodes en piles de combustible i electrolitzadors, basats en electròlits amb conducció purament iònica. Dins d'este grup, es va comprovar la influència de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d amb un 3% de Y, Zr i Sc en la posició B (ABO3-d;). Esta optimització va portar a la reducció de la resistència de polarització així com a una millora de l'estabilitat amb el temps. Així mateix, es van determinar els mecanismes limitants en la reacció de reducció d'oxigen, i es va comprovar la influència de la presència de CO2 en condicions d'operació.
El La2NiO4+d pertanyent a la sèrie de Ruddlesden-Popper, és un conductor mixt d'ions oxigen i electrons. Este, va ser dopat tant en la posició del La (amb Nd i Pr) com en la posició del Ni (amb Co). Els dopants introduïts a més de produir canvis estructurals, van provocar millores en el rendiment de la cel·la, reduint per a algun d'ells, com el La1.5Pr0.5Ni0.8Co0.2O4+d, en quasi un ordre de magnitud la resistència de polarització de l'elèctrode de referència (La2NiO4+d).
De la mateixa manera, es van optimitzar les propietats de l'elèctrode basat en el conductor electrònic pur La0.8Sr0.2MnO3-d (LSM). L'addició d'una segona fase, amb conductivitat iònica, va permetre augmentar els punts triples (TPB), en els que la reacció de reducció d'oxigen té lloc, i reduir la resistència de polarització. A fi de millorar la reacció de reducció d'oxigen, es va estudiar l'adició de nanocatalitzadors per mitjà de la tècnica d'infiltració. Els diferents òxids infiltrats van produir el canvi de les propietats electroquímiques de l'elèctrode, sent l'òxid de praseodimi el catalitzador que va aconseguir disminuir en dos ordres de magnitud la resistència de polarització del composite no infiltrat. De la mateixa manera, la millora de l'eficiència de l'elèctrode infiltrat amb Pr, va millorar els resultats de la cel·la electroquímica treballant com a pila (majors densitats de potència) i com a electrolitzador (menors voltatges).
Pel que fa als materials seleccionats per al seu ús com a elèctrodes en electròlits amb conductivitat protònica, es va optimitzar l'eficiència del càtode basat en LSM, per mitjà de l'ús d'una segona fase conductora protònica (La5.5WO12-d;) i variant la temperatura de sinterització de l'elèctrode. Finalment, es va millorar l'activitat catalítica mitjançant la infiltració de nanopartícules de ceria dopada amb samari, produint majors densitats de corrent de la pila de combustible.
Els materials pertanyents a la sèrie de Ruddlesden-Popper i usats per a càtodes en piles iòniques, van ser empleats també per a càtodes en piles protòniques. Després de comprovar que el material electrolític (LWO) era compatible amb els compostos de la sèrie de Ruddlesden-Popper, es va estudiar la influència de la temperatura de sinterització dels elèctrodes en el rendiment, així com de la composició de l'atmosfera d'aire (seca, H2O i D2O).
Finalment, es van dissenyar i optimitzar les cel·les electroquímiques basades en sals àcides (CsH2PO4). En este sentit, es van estudiar diferents configuracions de cel·la, que permeteren obtindre un electròlit dens amb el menor espessor possible i uns elèctrodes actius a la reacció de reducció/oxidació d'hidrogen.
Es va aconseguir reduir l'espessor de l'electròlit suportant la cel·la en discos d'acer i níquel porosos. Es va afegir una resina tipus epoxi al material electrolític per a augmentar les seues propietats mecàniques. De la mateixa manera, es va canviar la configuració dels elèctrodes passant per conductors electrònics purs a elèctrodes compostos per conductors protònics / Navarrete Algaba, L. (2017). New electrochemical cells for energy conversion and storage [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/78458
|
224 |
Development of new proton conducting materials for intermediate temperature fuel cellsaoxiang, Xiaoxiang January 2010 (has links)
The work in this thesis mainly focuses on the preparation and characterization of several phosphates and solid oxide systems with the aim of developing new proton conducting materials for intermediate temperature fuel cells (ITFCs). Soft chemical methods such as sol-gel methods and conventional solid state methods were applied for the synthesis of these materials. Aluminum phosphate obtained by a solution method is single phase and belongs to one of the Al(H₂PO₄)₃ allotropies with hexagonal symmetry. The material is stable up to 200°C and decomposes into Al(PO₃)₃ at a higher temperature. The electrical conductivity of pure Al(H₂PO₄)₃ is on the order of 10⁻⁶-10⁻⁷ S/cm, very close to the value for the known proton conductors AlH₃(PO₄)₂•3H₂O and AlH₂P₃O₁₀•2H₂O. Much higher conductivity is observed for samples containing even a trace amount of excess H₃PO₄. It is likely that the conduction path gradually changes from grain interior to the surface as the acid content increases. The conductivity of Al(H₂PO₄)₃-0.5H₃PO₄ exhibited a good stability over the measured 110 hours. Although tin pyrophosphate (SnP₂O₇) has been reported to show a significantly high conductivity (~10⁻² S/cm) at 250°C in various atmospheres, we observed large discrepancies in the electrical properties of SnP₂O₇ prepared by different methods. Using an excess amount of phosphorous in the synthetic procedure generally produces SnP₂O₇ with much higher conductivity (several orders of magnitude higher) than samples with stoichiometric Sn:P ratios in their synthetic procedure. Solid state ³¹P NMR confirmed the presence of residual phosphoric acid for samples with excess starting phosphorous. Transmission Electron Microscope (TEM) confirmed an amorphous layer covered the SnP₂O₇ granules which was probably phosphoric acid or condensed phases. Thereby, it is quite likely that the high conductivity of SnP₂O₇ results mainly from the contribution of the residual acid. The conductivity of these samples exhibited a good stability over the measured 80 hours. Based on the observations for SnP₂O₇, we developed a nano core-shell structure based on BPO₄ and P₂O₅ synthesised by solid state methods. The particle size of BPO₄ using this method varied between 10-20 nm depending on the content of P₂O₅. TEM confirmed the existence of an amorphous layer that is homogeneously distributed. The composite exhibits the highest conductivity of 8.8×10⁻² S/cm at 300°C in air for 20% extra P₂O₅ and demonstrates a good stability during the whole measured 110 hours. Polytetrafluoroethylene (PTFE) was introduced into the composites in order to increase malleability for fabrication. The conductivity and mechanical strength were optimized by adjusting the PTFE and P₂O₅ content. These organic-inorganic composites demonstrate much better stability at elevated temperature (250°C) over conventional SiC-H₃PO₄-PTFE composites which are common electrolytes for phosphoric acid fuel cells (PAFCs). Fuel cells based on BPO₄-H₃PO₄-PTFE composite as the electrolyte were investigated using pure H₂ and methanol as fuels. A maximum power density of 320 mW/cm² at a voltage of 0.31 V and a maximum current density of 1.9 A/cm² at 200°C were observed for H₂/O₂ fuel cells. A maximum power density of 40 mW/cm² and maximum current of 300 mA/cm² 275°C were observed when 3M methanol was used in the cell. Phosphoric acid was also introduced into materials with internal open structures such as phosphotungstic acid (H₃PW₁₂O₄₀) and heteropolyacid salt ((NH₄)₃PW₁₂O₄₀), for the purpose of acquiring additional connections. The hybrids obtained have a cubic symmetry with enlarged unit cell volume, probably due to the incorporation of phosphoric acid into the internal structures. Solid state ³¹P NMR performed on H₃PW₁₂O₄₀-xH₃PO₄ (x = 0-3) showed additional peaks at high acid content which could not assigned to phosphorus from the starting materials, suggesting a strong interaction between H₃PW₁₂O₄₀ and H₃PO₄. The conductivity of hybrids was improved significantly compared with samples without phosphoric acid. Fourier transform infrared spectra (FT-IR) suggest the existence of large amount of hydrogen bonds (OH••••O) that may responsible for the high conductivity. A H₂/O₂ fuel cell based on H₃PW₁₂O₄₀-H₃PO₄-PTFE exhibited a peak power density of 2.7 mW/cm² at 0.3 V in ambient temperature. Solid oxide proton conductors based on yttrium doped BaZrO₃ were investigated by introducing potassium or lanthanum at the A-sites. The materials were prepared by different methods and were obtained as a single phase with space group Pm-3m (221). The unit cell of these samples is slightly smaller than the undoped one. The upper limit of solid solution formation on the A-sites for potassium is between 5 ~ 10% as introducing more K results in the occurrence of a second phase or impurities such as YSZ (yttrium stabilized zirconium). K doped Barium zirconates showed an improved water uptake capability even with 5% K doping, whereas for La doped ones, water uptake is strongly dependent on particle size and synthetic history. The conductivity of K doped BaZrO₃ was improved by a factor of two (2×10⁻³ S/cm) at 600°C compared with undoped material. Fuel cells based on Pt/Ba₀₋₉₅K₀₋₀₅Zr₀₋₈₅Y₀₋₁₁Zn₀₋₀₄O[subscript(3-δ)]/Pt under humidified 5% H₂/air conditions gave a maximum power density 7.7 mWcm⁻² at 718°C and an interfacial resistance 4 Ωcm⁻². While for La doped samples, the conductivity was comparable with undoped ones; the benefits of introducing lanthanum at A-sites may not be so obvious as deficiency of barium is one factor that leads to the diminishing conductivity.
|
225 |
Solid oxide steam electrolysis for high temperature hydrogen productionEccleston, Kelcey L. January 2007 (has links)
This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel cells (SOFC), so many of the same component materials may be used. However, other electrode materials are of interest to improve performance and efficiency. In this work anode materials were investigated for use in solid oxide electrolysers. Perovskite materials of the form L₁₋xSrxMO₃ , where M is Mn, Co, or Fe. LSM is a well understood electrode material for the SOFC. Under electrolysis operation LSM performed well and no interface reactions were observed between the anode and YSZ electrolyte. LSM has a relatively low conductivity and the electrode reaction is limited to the triple phase boundary regions. Mixed ionic-electronic conductors of LSCo and LSF were investigated, with these materials the anode reaction is not limited to triple phase boundaries. The LSCo anode had adherence problems in the electrolysis cells due to the thermal expansion coefficient mismatch with the YSZ electrolyte. The LSCo reacted with the YSZ at the anode/electrolyte interface forming insulating zirconate phases. Due to these issues the LSCo anode cells performed the poorest of the three. The performance of electrolysis cells with LSF anode exceeded both LSM and LSCo, particularly under steam operation, although an interface reaction between the LSF anode and YSZ electrolyte was observed. In addition to the anode material studies this work included the development of solid oxide electrolyser tubes from tape cast precursor materials. Tape casting is a cheap processing method, which allows for co-firing of all ceramic components. The design development resulted in a solid design, which can be fabricated reliably, and balances strength with performance. The design used LSM anode, YSZ electrolyte, and Ni-YSZ cathode materials but could easily be adapted for the use of other component materials. Proper sintering rates, cathode tape formulation, tube length, tape thickness, and electrolyte thickness were factors explored in this work to improve the electrolyser tubes.
|
226 |
The Development of a Coupled Physics and Kinetics Model to Computationally Predict the Powder to Power Performance of Solid Oxide Fuel Cell Anode MicrostructuresGaweł, Duncan Albert Wojciech 03 October 2013 (has links)
A numerical model was developed to evaluate the performance of detailed solid oxide fuel cell (SOFC) anode microstructures obtained from experimental reconstruction techniques or generated from synthetic computational techniques. The model is also capable of identifying the linear triple phase boundary (TPB) reaction sites and evaluating the effective transport within the detailed structures, allowing a comparison between the structural properties and performance to be conducted. To simulate the cell performance, a novel numerical coupling technique was developed in OpenFOAM and validated. The computational grid type and mesh properties were also evaluated to establish appropriate mesh resolutions to employ when studying the performance. The performance of a baseline synthetic electrode structure was evaluated using the model and under the applied conditions it was observed that the ionic potential had the largest influence over the performance.
The model was used in conjunction with a computational synthetic electrode manufacturing algorithm to conduct a numerical powder to power parametric study investigating the effects of the manufacturing properties on the performance. An improvement in the overall performance was observed in structures which maximized the number of reaction sites and had well established transport networks in the ion phase. From the manufacturing parameters studied a performance increase was observed in structures with low porosity and ionic solid volume fractions near the percolation threshold, and when the anodes were manufactured from small monosized particles or binary mixtures comprising of smaller oxygen ion conductive particles. Insight into the anode thickness was also provided and it was observed that the current distribution within the anode was a function of the applied overpotential and an increase in the overpotential resulted in the majority of the current production to increase and shift closer to the electrode-electrolyte interface. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-10-01 09:41:47.617
|
227 |
Síntese, caracterização estrutural, termoquímica e elétrica de materiais cerâmicos para células a combustível de óxido sólido / Synthesis, structural, thermochemical and electrical characterization of ceramic materials for solid oxide fuel cellsCosta, Gustavo Carneiro Cardoso da 16 December 2008 (has links)
Pós nanocristalinos de zircônia estabilizada com ítria ou escândia (YSZ ou ScSZ) entre 8 e 12 mol% foram sintetizados por meio dos métodos da poliacrilamida, dos precursores poliméricos e da precipitação simultânea de cátions. Os pós de partida foram analisados por difração de raios X (DRX), distribuição de tamanho de partículas por espalhamento laser, adsorção gasosa (BET), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), análise térmica simultânea, fluorescência de raios X (FRX), e espectroscopia de absorção óptica no infravermelho por refletância difusa (DRIFT). Os métodos de síntese por via úmida orgânica produziram pós nanocristalinos a partir de 550 °C, enquanto que o método da precipitação simultânea de cátions produziu pós amorfos que cristalizaram em torno de 450 °C com entalpias de cristalização -13,7 ± 0,6 kJ.mol-1 para 8YSZ e -11,7 ± 0,5 kJ.mol-1 para 12YSZ. Os valores de área de superfície específica obtidos para os pós sintetizados por meio dos métodos da poliacrilamida, dos precursores poliméricos e da precipitação (calcinados em ~ 650 °C) foram 27, 61 e 110 m2.g-1, respectivamente. Os pós obtidos pelo método da poliacrilamida apresentaram menor estado de aglomeração e maior quantidade de carbonato superficial relativamente ao pó obtido pelo método dos precursores poliméricos. A sinterização dos compactos de pós cerâmicos foi avaliada por meio da técnica de espectroscopia de impedância (EI) e dilatometria. Após sinterização, as cerâmicas foram analisadas por DRX, MEV e EI. Os resultados evidenciaram que os pós apresentaram elevada sinterabilidade, mas baixa densidade final por causa do estado de aglomeração dos pós. A adsorção de água à temperatura ambiente foi medida em um microcalorímetro Setaram Calvet e um sistema de dosagem Micromeritics. Foram feitos experimentos de calorimetria de solução por inserção de amostra em um calorímetro duplo tipo Calvet usando 3Na2O.4MoO3 como solvente. Estes experimentos, combinados com os de calorimetria de adsorção de água, permitiram determinar por meio de um ciclo termodinâmico, as entalpias de superfície para superfícies hidratadas e anidras. / Nanocrystalline yttria or scandia stabilized zirconia (YSZ, ScSZ) powders with fluorite-type structure were synthesized by the polyacrylamide, the polymeric precursor and the precipitation methods. Powders were characterized by X-ray diffraction (XRD), simultaneous (TG and DTA or DSC) thermal analysis, nitrogen adsorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance infrared Fourier transform absorption spectroscopy (DRIFT). The organic precursor methods produced nanocrystalline powders at approximately 550 °C and the precipitation method produced amorphous powders which crystallized at approximately 450 °C into a fluorite phase with crystallization enthalpies of -13.7 ± 0.6 kJ.mol-1 for 8YSZ and -11.7 ± 0.5 kJ.mol-1 for 12YSZ. The measured surface area of powders after calcination at 650 - 800 °C were 27 m2.g-1, 61 m2.g-1 and 110 m2.g-1 for the polyacrylamide, the polymeric precursor and the precipitation methods, respectively. The sintering process of the pressed ceramic powders was evaluated by direct impedance spectroscopy (IS) measurements and by dilatometry. Thereafter, the sintered pellets were analyzed by XRD, SEM and IS. The sintering studies show that the powders prepared by the chemical route have high sinterability; however, they do not sinter to high density as a result of dense aggregates in the initial powders. The heats of water adsorption at room temperature were measured on samples using a Setaram Calvet microcalorimeter and a Micromeritics gas dosing system. Drop solution calorimetry experiments were performed in a custom made Calvet twin calorimeter using sodium molybdate 3Na2O.4MoO3 solvent. These experiments, combined with water adsorption calorimetry, allowed for deriving, through a thermodynamic cycle, the surface enthalpies for hydrous and anhydrous surfaces.
|
228 |
Síntese e caracterização de manganito de neodímio dopado com estrôncio utilizado como catodo em células a combustível de óxido sólido de temperatura intermediária / Synthesis and characterization of strontium-doped neodymium manganite used as cathode in intermediate temperature solid oxide fuel cellsVargas, Reinaldo Azevedo 31 July 2007 (has links)
O manganito de neodímio dopado com estrôncio (NSM) é um dos materiais catódicos alternativos e que estão sendo estudados e pesquisados para aplicação em células a combustível de óxido sólido de temperatura intermediária (ITSOFCs). O estrôncio (Sr) auxilia consideravelmente na condutividade elétrica e na proximidade do coeficiente de expansão térmica do NSM com os eletrólitos de céria gadolínia (GDC) e céria samária (SDC), e que tornam o material adequado ao uso em temperaturas entre 500 e 800 ºC. Seguindo este contexto, o presente trabalho é uma contribuição ao estudo da síntese de NSM com diferentes concentrações molares de Sr (10, 30 e 50 %), através da técnica de reação no estado sólido. Os materiais foram obtidos e caracterizados visando avaliá-los quanto às características adequadas para emprego na ITSOFC. Após a síntese dos pós e processamento do material sinterizado, avaliou-se principalmente o teor do dopante Sr para a identificação das composições químicas obtidas, estrutura cristalina formada, morfologia dos pós e cerâmicas, além da expansão térmica e condutividade elétrica do material sinterizado. Verificou-se que os valores das concentrações molares dos elementos químicos constituintes para a formação do NSM estão próximos dos valores calculados estequiometricamente antes da etapa de calcinação. A porosidade se mostrou mais adequada para as amostras sinterizadas a 1100 e a 1200 ºC. Comprovou-se que, o teor de dopante não altera significativamente a área de superfície específica e o valor das densidades. Os coeficientes de expansão térmica encontrados estão bastante próximos aos eletrólitos comerciais e verificou-se que com o aumento das concentrações molares de estrôncio, ocorre o acréscimo nos valores de coeficientes de expansão térmica. A condutividade elétrica está adequada para aplicação como material catódico. Os resultados mostram que a síntese por mistura de sólidos apesar de ter as suas desvantagens, quando realizada com cuidados, proporciona pós de NSM, com boas características físicas, químicas e microestruturais. Conclui-se que as características do material com composição de 30 % em mol de Sr é a mais adequada para a preparação de suspensões cerâmicas para posterior deposição no eletrólito sólido de GDC e/ou SDC, embora sejam necessários outros estudos das características deste material como dispositivo eletroquímico para aplicação em ITSOFCs. / The strontium-doped neodymium manganite (NSM) is one of the alternative cathodic materials and they have been studied and searched for application in intermediate temperature solid oxide fuel cells (ITSOFCs). The strontium (Sr) assists considerably in the electric conductivity and in the proximity of the thermal expansion of the NSM with electrolytes of ceria doped with gadolinium (GDC) or samarium (SDC), allowing them to become the adequate material for the use in temperatures between 500 and 800 ºC. Following this context, the present work is a contribution to the study of the synthesis of NSM with different molar concentrations of Sr (10, 30 and 50 %), through the technique of solid state reaction. The materials were obtained and characterized to be adjusted to the requested characteristics for operating in the ITSOFC. After the synthesis of the powders and processing the sintered material, it was evaluated the concentration of Sr for the identification of chemical compositions, crystalline structure, powders morphology and ceramics, besides the thermal expansion and electric conductivity of the sintered material. It was verified that the values of the molar concentrations of the constituent chemical elements of the NSM are close to the values theoretically calculated before the stage of calcination. The porosity showed to be more adequate for the samples sintered at 1100 and 1200 ºC. One proved that, the increase of the Sr, relatively little, diminishes the specific surface area and the value of the densities and the coefficients of thermal expansion of the sintered samples. The found coefficients of thermal expansion are sufficiently close to the ones of commercial electrolytes and the electric conductivity is adequate for a cathodic application as material. The results show that the synthesis by solid state reaction, although having its disadvantages, provides powders of NSM with good physical, chemical and microstructural characteristics when carried with certain cares. It is concluded that the composition of 30 % in mol of Sr and sintered at 1200 ºC is the best for the preparation of ceramic suspensions for posterior deposition on the solid electrolyte of GDC and/or SDC, even so further studies are necessary to completely adjust this material to be used in a electrochemical device for application in ITSOFCs.
|
229 |
Processamento e caracterização elétrica de perovisquitas hexagonais de ba5nb4o15 dopadas com titânio e zircônioUnti, Luiz Fernando Kultz 31 January 2017 (has links)
Submitted by Eunice Novais (enovais@uepg.br) on 2017-09-01T17:51:26Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Luiz Fernando K Unti.pdf: 6181881 bytes, checksum: b0280e86919fc3c265d97d1ffba8200e (MD5) / Made available in DSpace on 2017-09-01T17:51:26Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Luiz Fernando K Unti.pdf: 6181881 bytes, checksum: b0280e86919fc3c265d97d1ffba8200e (MD5)
Previous issue date: 2017-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Dentre os materiais mais comuns utilizados para a construção de eletrólitos e eletrodos das células a combustível de óxido sólido (CaCOS) estão os óxidos com estrutura semelhante à perovisquita; estes apresentam características desejáveis para esta aplicação, como boa condutividade elétrica. Diversos são os estudos nesta área atualmente, onde um dos enfoques é o desenvolvimento de materiais com condutividade protônica para melhorar a performance destes condutores. O presente trabalho avaliou a viabilidade do composto Ba5Nb4O15 (BNO) como possível candidato na produção de elementos de CaCOS. Este composto possui uma estrutura de perovisquita hexagonal, e estudos recentes apontam que é largamente utilizado em ressoadores dielétricos e há indícios que este tipo de estrutura pode apresentar condutividade protônica. Nesse trabalho foi avaliada a síntese da fase BNO através de um método alternativo à reação no estado sólido, baseada no método Pechini modificado, usando para isto precursores no formato de óxido. Como há diversas rotas diferentes de processamento para esta fase, comparou-se a sinterabilidade dos pós obtidos nas sínteses através da densificação, após serem conformados e sinterizados em duas temperaturas: 1400 e 1450ºC. Também se estudou a influência da adição de dopantes de menor valência (titânio e zircônio) na estrutura e nas propriedades elétricas da fase pura. Foi possível obter a fase BNO em todas as sínteses, embora após a primeira calcinação houvesse diferentes fases na amostra obtida pelo método Pechini; estas fases secundárias desapareceram após a sinterização. Atingiu-se maior densificação ao submeter os pós sintetizados à moagem, previamente à conformação, onde se atingiu porosidades aparentes menores que 5%. As dopagens promoveram o refino do grão, mas não foram eficientes no aumento da condutividade do composto. Contudo, as amostras sinterizadas em 1450ºC apresentaram maior condutividade em atmosfera úmida (H2O) do que em água pesada (D2O), o que pode ser um indício da existência de condutividade protônica nesta estrutura. / Among the common materials used to produce solid oxide fuel cell’s (SOFC’s) electrolytes and electrodes areoxides with perovskite structures; they show desirable characteristics for this application, like good levels of ionic conduction. Nowadays, there are many different studies on this field, where developing new proton conduction materials to improve SOFC’s performance is one of them. Present work evaluated the viability of compound Ba5Nb4O15 (BNO) as a candidate to produce SOFC’s elements. This compound show a hexagonal perovskite structure and recent papers point this kind of structure is currently used can show some indications of proton conduction. At present study, it was evaluated BNO synthesis through an alternate method to solid-state reaction, based on Pechini method and using different oxides as precursors. Since there are many different processing routes to obtain this phase, it was compared sinterability of synthesized powders after pressing and sintering at two temperatures: 1400 and 1450ºC. The poisoning effect of titanium and zirconium on structure and electric properties was also studied. BNO phase was successful obtained in all synthesis, although non-stoichiometry phases were present on Pechini sample after first calcination; after sintering, these phases were no longer present though. A higher densification was obtained after milling synthesized powder previously to pressing: a bulk porosity smaller than 5% was achieved. Doping produce grain refinement, but it was not efficient improving electrical conductivity. However, sintered samples at 1450ºC had shown higher conductivity on humid atmosphere (H2O) than presented on heavy water atmosphere (D2O). This could be an indication of proton conductionin this structure.
Keywords: proton conduction, hexagonal perovskites, Pechini method, solid oxide fuel cells.
|
230 |
Tailoring superconductor and SOFC structures for power applicationsMitchell-Williams, Thomas Benjamin January 2017 (has links)
High temperature superconductors (HTS) and solid oxide fuel cells (SOFCs) both offer the possibility for dramatic improvements in efficiency in power applications such as generation, transmission and use of electrical energy. However, production costs and energy losses prohibit widespread adoption of these technologies. This thesis investigates low-cost methods to tailor the structures of HTS wires and SOFCs to reduce these energy losses. Section I focusses on methods to produce filamentary HTS coated conductors that show reduced AC losses. This includes spark-discharge striation to pattern existing HTS tapes and inkjet printing of different filamentary architectures. The printed structures are directly deposited filaments and ‘inverse’ printed tracks where an initially deposited barrier material separates superconducting regions. Furthermore, the concept and first stages of a more complex ‘Rutherford’ cable architecture are presented. Additionally, Section I investigates how waste material produced during the manufacture of an alternative low-AC loss cable design, the Roebel cable, can be used to make trapped field magnets that produce a uniform magnetic field profile over a large area. This trapped field magnet work is extended to study self-supporting soldered stacks of HTS tape that demonstrate unprecedented magnetic field uniformity. Section II looks at how nanostructuring porous SOFC electrodes via solution infiltration of precursors can improve long-term stability and low temperature performance. Inkjet printing is utilised as a scalable, low-cost technique to infiltrate lab-scale and commercial samples. Anode infiltration via inkjet printing is demonstrated and methods to increase nanoparticle loading beyond ~1 wt% are presented. Symmetric cells with infiltrated cathodes are shown to have improved performance and stability during high temperature aging. Additionally, the sequence of solution infiltration is found to be important for samples dual-infiltrated with two different nanoparticle precursors.
|
Page generated in 0.0723 seconds