Spelling suggestions: "subject:"eolução singular"" "subject:"evolução singular""
1 |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro / Prescribing analytic singularities for solutions of a class of vector fields on the torusBeezão, Andreza Cristina 04 May 2011 (has links)
Seja L \'= PONTO\' \'\\partial IND. t\' + [\'a(t) + ib (t)] \'\\partial IND. x\' um operador diferencial parcial agindo em distribuições definidas no toro bidimensional \'T POT. 2\'; onde a; b : \'T POT. 1\' \' SETA\' R são funções analíticas reais. Suponhamos que L não ée globalmente analítico hipoelítico e b não é uma função identicamente nula. O objetivo principal deste trabalho é o estudo das soluções singulares de L; através da natureza e da localização das suas singularidades. Com este intuito, primeiramente abordaremos a teoria das séries parciais de Fourier, que nos permitem relacionar o comportamento assintótico dos coeficientes parciais de Fourier de um dado objeto com a regularidade do mesmo / Let L \'= PONTO\' \'\\partial ind. t\' + [ a (t) + ib (t) ] \'\\partial IND. x\' be a partial differential operator acting on distributions on the two-torus \'T POT. 2\' , where a; b : \'T POT. 1\' \'ARROW\' R are real analytic functions. Assume that L is not a globally analytic hypoelliptic operator and b is not identically zero. The main goal of this work is the study of the singular solutions of L; by means of the nature and localization of their singularities. To this end, we first study the theory of partial Fourier series, which are a useful tool to analyze the regularity of a given distribution
|
2 |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro / Prescribing analytic singularities for solutions of a class of vector fields on the torusAndreza Cristina Beezão 04 May 2011 (has links)
Seja L \'= PONTO\' \'\\partial IND. t\' + [\'a(t) + ib (t)] \'\\partial IND. x\' um operador diferencial parcial agindo em distribuições definidas no toro bidimensional \'T POT. 2\'; onde a; b : \'T POT. 1\' \' SETA\' R são funções analíticas reais. Suponhamos que L não ée globalmente analítico hipoelítico e b não é uma função identicamente nula. O objetivo principal deste trabalho é o estudo das soluções singulares de L; através da natureza e da localização das suas singularidades. Com este intuito, primeiramente abordaremos a teoria das séries parciais de Fourier, que nos permitem relacionar o comportamento assintótico dos coeficientes parciais de Fourier de um dado objeto com a regularidade do mesmo / Let L \'= PONTO\' \'\\partial ind. t\' + [ a (t) + ib (t) ] \'\\partial IND. x\' be a partial differential operator acting on distributions on the two-torus \'T POT. 2\' , where a; b : \'T POT. 1\' \'ARROW\' R are real analytic functions. Assume that L is not a globally analytic hypoelliptic operator and b is not identically zero. The main goal of this work is the study of the singular solutions of L; by means of the nature and localization of their singularities. To this end, we first study the theory of partial Fourier series, which are a useful tool to analyze the regularity of a given distribution
|
3 |
Existência e simetrias para uma equação elíptica não-linear com potencial monopolar e anisotrópicoAmorim, Charles Braga 27 February 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This master thesis is concerned to nonlinear elliptic problem with mono-polar anisotropic potential
u + u|u|p−1 + v (x)u + f(x) = 0 in Rn
u(x) - 0, as |x| - 00
provided n > 3 and p > n
n−2 . These results, between others things, deals with sub-critical, critical and
super-critical nonlinearity. We obtain well-posedness of solutions, regularity in c2(Rn), symmetries and
asymptotic behavior of solutions in singular spaces Hk. We employ Banach fixed technique and a theorem
of regularity elliptic to get those results, this technique does not need of the Hardy type inequalities and
variational methods. / Nesta dissertação estudamos o problema elíptico
u + u|u|p−1 + v (x)u + f(x) = 0 em Rn
u(x) - 0, quando |x| - 00 sujeito a restrições n > 3 e p > n
n−2 , cobrindo os casos sub-críticos, críticos e super-críticos. Obtemos
boa-colocação de soluções, regularidade, simetrias de soluções e comportamento assintótico em espaços
singulares Hk. Empregamos um argumento de ponto fixo em Hk e Ek ao invés de usar desigualdades do
tipo Hardy e métodos variacionais.
|
Page generated in 0.0477 seconds