Spelling suggestions: "subject:"solvability"" "subject:"volvability""
21 |
Resolubilidade perto do conjunto característico para uma classe de campos vetoriais complexos / Solvability near the characteristic set for a class of complex vector fieldsLorena Soriano Hernandez 11 August 2016 (has links)
Esta dissertação expõe sobre a resolubilidade do campo vetorial complexo L = ∂ /∂t +(a(x) + ib(x))∂/∂x, b ≢ 0 definido em Ωε = (-ε, ε) × S1, ε > 0, perto do conjunto característico Σ = {0} × S1, sendo a e b funções de classe C∞ em (- ε, ε) a valores reais. Os resultados apresentados mostram que a resolubilidade de L em uma vizinhança cheia de Σ depende da relação entre as ordens de anulamento de a e b em x = 0. / This dissertation deals with the solvability of complex vector fieldL = ∂ /∂t +(a(x) + ib(x))∂/∂x, b ≢ 0 defined on Ωε = (-ε ε) × S1, ε > 0, near the characteristic set Σ = {0} × S1, where a and b are C∞ real-valued functions in (- ε, ε). The presented results show hat solvability of L in a full neighborhood of Σ depends on the interplay between the order of vanishing of the functions and a and b at x = 0.
|
22 |
Resolubilidade global para uma classe de sistemas involutivos / Global solvability for a class of involutive systemsCléber de Medeira 30 March 2012 (has links)
Estudamos a resolubilidade global de uma classe de sistemas involutivos com n campos vetoriais suaves definidos no toro de dimensão n + 1. Obtemos uma caracterização completa para o caso desacoplado desta classe em termos de formas de Liouville e da conexidade de todos os subníveis e superníveis, no espaço de recobrimento minimal, de uma primitiva global da 1-forma associada ao sistema. Além disso, apresentamos uma situação especial na qual o sistema não é globalmente resolúvel e usamos isso para obter alguns resultados em um caso com acoplamento mais forte / We study the global solvability of a class of involutive systems with n smooth vector fields on the torus of dimension n + 1. We obtain a complete characterization for the uncoupled case of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space. Also, we exhibit a special situation where the system is not globally solvable and we use this to obtain some results in a more general case
|
23 |
Resolubilidade global de uma classe de campos vetoriais / Global solvability for a class of vector fieldRafael Borro Gonzalez 25 February 2011 (has links)
O tema em estudo é a resolubilidade global de campos vetoriais em \'T POT. 2 IND. (x,t)\' da forma L = \'\\partial IND. t\' +a(x) \'\\PARTIAL IND. x\', onde a \'PERTENCE\' \'C POT. INFINITO\' (\'T POT. 1\' ) é uma função real. Consideraremos o caso em que o operador L age no espaço de funções e o caso em que L age no espaço de distribuições. Utilizando teoria de distribuições, forneceremos condições necessárias e sufiientes para que a imagem de L seja um subespaço fechado, ou seja, para que L seja globalmente resolúvel. O caso mais interessante ocorre quando a função a se anula em algum ponto mas não é identicamente nula; neste caso, L será globalmente resolúvel se, e somente se, \'a POT. -1\' (0) contiver apenas zeros de ordem finita. Faremos também o estudo da resolubilidade global de operadores da forma P = \'\\PARTIAL IND. t\' + \\PARTIAL IND. x\' (\'a AST .\'), os quais são perturbações por um termo de ordem zero dos campos da forma L. Os operadores da forma P surgem quando consideramos o transposto de um operador da forma L / The topic under study is the global solvability of vector fields of the form L = \'\\PARTIAL IND. t\'+a(x)\'\\PARTIAL IND.x\' on the 2-torus \'T POT. 2 IND. (x;t)\' ; where a \'IT BELONGS\' \'C POT. INFINITY\' (\'T POT. 1\') is a real valued function. We consider the operator L acting on both spaces of functions and distributions. Using distribution theory we give necessary and sufficient conditions for the closedness of the range of L, ie, for L to be globally solvable. The most interesting case occurs when a vanishes somewhere but not everywhere; in this case, we show that a necessary and sufficient condition for L to be globally solvable is that each zero of a is of finite order. We also study the global solvability of operators of the form P = \'\\ PARTIAL IND. t\'+\'\\ PARTIAL IND. x(\'a AST .\' which are perturbations of L by a term of zero order. The operators P appear when we consider the transpose operator of L
|
24 |
Resolubilidade perto do conjunto característico para uma classe de operadores diferenciais parciais de primeira ordem / Solvability near the characteristic set for a clas of partial differential operators of the first orderWanderley Aparecido Cerniauskas 25 August 2014 (has links)
Seja L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, um campo vetorial complexo definido em A∊ = (-∊ , ∊) × S1, ∊ > 0, sendo a, b ∈ C∞((-∊ , ∊);ℝ) e (x, t) ∈ (-∊ ∊) × S1. Assuma que b-1(0) = {0}. Este trabalho trata da resolubilidade perto do conjunto característico {0} × S1; da equação Lu = pu + f, p, f ∈ C∞ (A∊). A relação entre as ordens de anulamento das funções a e b em x = 0 e certas médias da função p tem influência na resolubilidade. / Let L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, be a complex vector field defined in A∊ = (-∊ , ∊) × S1, ∊ > 0, where a, b ∈ C∞((-∊ , ∊);ℝ) and (x, t) ∈ (-∊ ∊) × S1. Assume that b-1(0) = {0}. This work deals with the volvability near the characteristic set {0} × S1; of equation. Lu = pu + f, p, f ∈ C∞ (A∊). The interplay between the orders of vanishing of the functions a and b at x = 0 and certain averages of the function p has influence in the solvability.
|
25 |
Resolubilidade local de campos vetoriais reais / Local solvability of real vector fieldsUirá Norberto Matos de Almeida 14 February 2014 (has links)
Nesta dissertação vamos estudar alguns importantes resultados acerca da resolubilidade local de operadores lineares de primeira ordem. Mais especificamente, seja o campo vetorial singular L em \'R POT. n\' e dado por: L = \'\\SIGMA SUP. m\' . INF. j=1\' a IND. j\' (x) \'SUP. \\PARTIAL\' INF. \\PARTIAL x INF. j\'. Esta trabalho dirige-se ao estudo da resolubilidade local de L, isto é, dada f \'PERTENCE A\' \' C POT. INFINITO\' (\'R POT. n\') e dado \'x IND. 0\' \'PERTENCE A\' \'R POT. n queremos encontrar u \'PERTENCE A\' D\'(\'R POT.n \') tal que Lu = f numa vizinhança de \'x INF. 0\'. Será dada atenção especial ao caso em que os coeficientes \'a IND. j\'(x) de L são função lineares. Também, serão apresentados resultados sobre a resolubilidade local da equação Lu = cu + f, sendo c \'PERTENCE A\' \'C POT. INFINITO\' (\'R POT. n\') / This dissertation aims to study some important results about local solvability of first order differential operators. Specifically, let L be a singular vector field on \'R POT. n\' given by L = \' \\SIGMA SUP. m INF.j=1\' \'a IND. j(x) \'\\PARTIAL SUP. INF. \\PARTIAL x INF. j\'. This work explore the local solvability of L, that is, given f \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\' and \'x INF. 0\' \'IT BELONGS\' \'R POT. n\' we want to find u \'IT BELONGS\' 2 D\'(\'R POT. n) such that Lu = f in a neighborhood of \'x INF. 0\'. We give special attention to the case where the coefficients \'a IND. j\'(x) are linear. We also present some results about local solvability of the equation Lu = cu + f for c \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\')
|
26 |
Probability of Solvability of Random Systems of 2-Linear Equations over <i>GF</i>(2)Yeum, Ji-A January 2008 (has links)
No description available.
|
27 |
Optimization and Algorithms for Wireless Networks: Enhancing Problem Solvability, Channel Bonding Under Demand Stochasticity, and Receiver Characteristic AwarenessAbdelfattah, Amr Nabil A. 10 January 2018 (has links)
5G networks appear on the horizon with distinguished Quality of Service (QoS) requirements such as aggregated data rate and latency. Managing such networks in either a distributed or centralized manner to best utilize the available scarce resources is still a big challenge. Better mechanisms are needed for resource allocation. In this dissertation, we discuss three distinct research problems related to this theme.
The first part addresses enhancing the solvability of network optimization problems. For the class of problems studied, we show that a traditionally-formulated model is insufficient from a problem-solving perspective. When the size of the problem increases, even state-of-the-art optimizers cannot obtain an optimal solution because of memory constraints. We show that augmenting the model with suitable additional constraints and structure enables the optimizer to derive optimal solutions, or significantly reduce the optimality gap.
The second problem is optimal channel bonding in wireless LANs under demand uncertainty. An access point (AP) can aggregate multiple contiguous channels to satisfy demand. We discuss how to optimally utilize available frequency bands under uncertainty in AP demand using two stochastic optimization frameworks: a static scheme which minimizes the total occupied bandwidth while satisfying the demand of each AP with probability at least β and an adaptive scheme that allows adaptability of the bandwidth allocation in response to the AP demand variations. Given its complexity, we propose a novel framework to solve the adaptive stochastic optimization problem efficiently.
The third problem is to allocate resources with receiver characteristic awareness in a multiple radio access technology environment. We propose a novel adjacent channel interference (ACI)-aware joint channel and power allocation framework that takes into account receiver imperfections arising due to (i) imperfect image frequency rejection and (ii) analog-to-digital converter aliasing. As the overall problem is in the form of Mixed-Integer-Linear-Programming (MILP) which is NP-hard, we develop an efficient algorithm to solve it. / Ph. D. / The applications of next generation wireless networks have distinct requirements such as high speed for video streaming, low delay for interactive applications, and scalability to manage huge numbers of wireless devices. Managing such networks is challenging given the scarcity of wireless resources. In this dissertation, we discuss three distinct research problems related to this theme. The first part addresses enhancing the solvability of network optimization problems. State-of-the-art commercial optimization tools are unable to solve these problems for reasonable network sizes. We propose multiple strategies that help the tool obtain optimal solutions quickly. The second part considers indoor wireless networks. For such a network, we propose a technique that matches the instantaneous resources allocated to each location in the network with the amount of data traffic currently at the location. The third part addresses a problem of a network with multiple wireless transmitters and receivers where each receiver suffers from interference from other transmitters differently. We develop an algorithm to allocate resources and adjust transmit power so that each pair can communicate while meeting a minimum required data rate. The three parts of the dissertation are useful in either saving resources and hence allowing more users to use the network, or providing higher service quality for wireless device users.
|
28 |
Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups / Resolubilidade em grau máximo para estruturas hipocomplexas e a cohomologia de estruturas involutivas invariantes à esquerda em grupos de Lie compactosJahnke, Max Reinhold 21 December 2018 (has links)
We use the theory of dual of Fréchet-Schwartz (DFS) spaces to establish a sufficient condition for top-degree solvability for the differential complex associated to a hypocomplex locally integrable structure. As an application, we show that the top-degree cohomology of left-invariant hypocomplex structures on a compact Lie group can be computed only by using left-invariant forms, thus reducing the computation to a purely algebraic one. In the case of left-invariant elliptic involutive structures on compact Lie groups, under certain reasonable conditions, we prove that the cohomology associated to the involutive structure can be computed only by using left-invariant forms. / Usamos a teoria da espaços duais de Fréchet-Schwartz (DFS) para estabelecer uma condição suficiente para resolubilidade em grau máximo para o complexo associado a estrutuas localmente integráveis hipocomplexas. Como aplicação, provamos que a cohomologia de estruturas hipocomplexas invariantes à esquerda podem ser calculadas usando apenas formas invariantes à esquerda, assim reduzindo o cálculo a um método puramente algébrico. No caso de estruturas invariantes à esquerda, sob certas condições razoáveis, provamos que a cohomologia associada à estrutura pode ser calculada usando apenas formas invariantes à esquerda.
|
29 |
Propriedades globais de uma classe de complexos diferenciais / Global properties of a class of differential complexesBotós, Hugo Cattarucci 23 March 2018 (has links)
Considere a variedade Tn x S1 com coordenadas (t;x) e considere uma 1-forma diferencial fechada e real a(t) em Tn. Neste trabalho consideramos o operador Lpa = dt +a(t) Λ ∂x de D\'p em D\'p+1, onde D\'p é o espaço das p-correntes da forma u = ∑ Ι I Ι = puI (t, x)dtI. O operador acima define um complexo de cocadeia formado pelos espaços vetoriais D\'p e pelos homomorfismos lineares Lpa : D\'p → D\'p+1. Definiremos o que significa resolubilidade global no complexo acima e caracterizaremos para quais 1-formas a o complexo é globalmente resolúvel. Faremos o mesmo com respeito a hipoeliticidade global no primeiro nível do complexo. / Consider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D\'p from D\'p to D\'p+1, where D\'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D\'p and of the linear maps Lpa : D\'p → D\'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.
|
30 |
Propriedades globais de uma classe de complexos diferenciais / Global properties of a class of differential complexesHugo Cattarucci Botós 23 March 2018 (has links)
Considere a variedade Tn x S1 com coordenadas (t;x) e considere uma 1-forma diferencial fechada e real a(t) em Tn. Neste trabalho consideramos o operador Lpa = dt +a(t) Λ ∂x de D\'p em D\'p+1, onde D\'p é o espaço das p-correntes da forma u = ∑ Ι I Ι = puI (t, x)dtI. O operador acima define um complexo de cocadeia formado pelos espaços vetoriais D\'p e pelos homomorfismos lineares Lpa : D\'p → D\'p+1. Definiremos o que significa resolubilidade global no complexo acima e caracterizaremos para quais 1-formas a o complexo é globalmente resolúvel. Faremos o mesmo com respeito a hipoeliticidade global no primeiro nível do complexo. / Consider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D\'p from D\'p to D\'p+1, where D\'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D\'p and of the linear maps Lpa : D\'p → D\'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.
|
Page generated in 0.0452 seconds