• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 62
  • 56
  • 29
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 498
  • 498
  • 115
  • 105
  • 100
  • 88
  • 78
  • 75
  • 66
  • 52
  • 50
  • 48
  • 45
  • 44
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A novel time offset compensation method for channel estimation in cooperative communication networks

Chen, Jau-Hung 20 July 2011 (has links)
In recent years, relay communication has been proved to achieve the transmis-sion diversity order with space-time block coding (STBC). Most research assumedthat the relay nodes are in perfect synchronization. However, in actual, becausethe transmitting time at each relay is different, the signals from different relays received at destination will interfere with each other. Inter-symbol interference (ISI) iscaused. Besides, the time synchronization error will reduce orthogonality of space-time block coding and result in serious performance degrade. This thesis proposes a time delay compensation method by using Fourier transform and Least Square(LS)estimation method. The destination node can utilize the estimated time delay tosynchronize the received signal. Then, the space-time coding will maintain orthogonality at the receiver. Simulation results show that the proposed method caneffectively improve the performance of cooperative networks when imperfect timesynchronization exists.
162

Pseudo Random Cyclic Postfix ST-BC MIMO-OFDM Systems with GSC-Based Equalizer

Tsai, Meng-Han 27 August 2011 (has links)
The Orthogonal frequency division multiplexing (OFDM) technique has been intensively used in many wireless communication systems to achieve higher data rate transmissions. Due to the fact that the OFDM technique entails redundant block transmissions; the transmitted blocks suffer from the inter-symbol interference (ISI) and inter-block interference (IBI). To compensate this serious effect, in many literatures redundant symbols (or guard interval) with adequate length are inserted in the transmitted symbols to prevent the IBI. Also, in the receiver the equalizer can be employed to deal with ISI. In this thesis, we present a new pseudo random cyclic-postfix (PRCP-) OFDM associated with the multiple-input multiple-output (MIMO) antenna system configuration to further improve the system performance. In fact, the MIMO system can enhance channel capacity and achieve high data-rate. The above-mentioned PRCP-OFDM technique combines with the MIMO antennas system, through the appropriate model design can be used to combat the multi-path effect or the inter-block interference. As evident from the simulation results, the proposed ST-BC MIMO PRCP-OFDM system can avoid the interference of transmitted signals during the estimation of channel impulse response (CIR) with proposed cyclic-postfix sequences. In addition, to further improve and eliminate the residual IBI and ICI, the equalizer with the framework of the generalized sidelobe canceller (GSC) is considered. Specifically, when SNR grows, the proposed ST-BC MIMO PRCP-OFDM system can perform successfully in terms of symbol-error rate and semi-blind channel estimation. This is verified via the computer simulations.
163

Inference and Visualization of Periodic Sequences

Sun, Ying 2011 August 1900 (has links)
This dissertation is composed of four articles describing inference and visualization of periodic sequences. In the first article, a nonparametric method is proposed for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator. The second article is the multivariate extension, where we present a CV method of estimating the periods of multiple periodic sequences when data are observed at evenly spaced time points. The basic idea is to borrow information from other correlated sequences to improve estimation of the period of interest. We show that the asymptotic behavior of the bivariate CV is the same as the CV for one sequence, however, for finite samples, the better the periods of the other correlated sequences are estimated, the more substantial improvements can be obtained. The third article proposes an informative exploratory tool, the functional boxplot, for visualizing functional data, as well as its generalization, the enhanced functional boxplot. Based on the center outwards ordering induced by band depth for functional data, the descriptive statistics of a functional boxplot are: the envelope of the 50 percent central region, the median curve and the maximum non-outlying envelope. In addition, outliers can be detected by the 1.5 times the 50 percent central region empirical rule. The last article proposes a simulation-based method to adjust functional boxplots for correlations when visualizing functional and spatio-temporal data, as well as detecting outliers. We start by investigating the relationship between the spatiotemporal dependence and the 1.5 times the 50 percent central region empirical outlier detection rule. Then, we propose to simulate observations without outliers based on a robust estimator of the covariance function of the data. We select the constant factor in the functional boxplot to control the probability of correctly detecting no outliers. Finally, we apply the selected factor to the functional boxplot of the original data.
164

Sigfried Giedion&#039 / s &quot / space, Time And Architecture&quot / : An Analysis Of Modern Architectural Historiography

Ceylanli, Zeynep 01 September 2008 (has links) (PDF)
This thesis investigates the key aspects of modern architecture in the first half of the twentieth century by an extensive reading of Sigfried Giedion&rsquo / s book on modern architecture: Space, Time and Architecture &ndash / The Growth of A New Tradition. Giedion&rsquo / s life, his education, his other writings and his relationships with the pioneers of the era are considered as significant influences on the writing of the book. After giving an informative summary of the book, the key themes of the book are analyzed. While analyzing these themes, the opinions of other architectural historians on these themes are also taken into consideration. The reviews on the book are elucidated in order to grasp the first reactions of architectural history circles, and then they were followed by the later impressions. The claim is that Space, Time and Architecture is an influential resource for the understanding of how modern architecture is written about in the first half of the twentieth century. The proof of this influence is both the written sources on the book and its rule in Manfredo Tafuri&rsquo / s formulation of &lsquo / operative criticism&rsquo / .
165

The Methods to Enhance 3G/ Beyond 3G/ Wireless LAN Transmission Rate and Efficiency

Liu, Wen-Chung 08 July 2002 (has links)
To achieve two main objectives, viz., to increase the system capacity and having higher data rates, of 3G system for individual users, it comes up to be the unprecedented demand on both communication bandwidth and powerful DSP processing techniques. In this thesis, a new space-time encoding scheme, referred to as the Virtual Constellation Mapping (VCM) scheme associated with the turbo encoder, is devised to enhance transmission data rate and spectral efficiency. It also alleviates the requirement of powerful signal processing technique. In fact, the proposed scheme is very simple and could be used to achieve full utilizing encoding efficiency. It means that the new scheme is easy in practical implementation. To verify the advantages of this new scheme, we apply it to both the 3GPP FDD of WCDMA system and OFDM based Wireless LAN system. First, by comparing the proposed scheme with the conventional standards 3GPP scheme, the information data rate is increased from 384 kbps information data rate to 450.4 kbps, that is 17 % improvement. It should be noted by using the new approach, other system components of 3GPP, e.g., modulation scheme, control bits and the data rate of the QPSK modulators outputs, are all the same. Moreover, this VCM scheme can be applied to the multicarrier modulation or the Wireless LAN with the OFDM modulation. Computer simulation results showed that with the same transmission data rate, our scheme is more robustness compare with the conventional space-time trellis coded OFDM scheme, in high Doppler fading channel. In addition, the proposed scheme required less decoding complexity as the standards, when it is implemented in the 3GPP system and the OFDM system with space-time trellis coding scheme.
166

New advances in symbol timing synchronization of single-carrier, multi-carrier and space-time multiple-antenna systems

Wu, Yik Chung 01 November 2005 (has links)
In this dissertation, the problem of symbol timing synchronization for the following three different communication systems is studied: 1) conventional single-carrier transmissions with single antenna in both transmitter and receiver; 2) single-carrier transmissions with multiple antennas at both transmitter and receiver; and 3) orthogonal frequency division multiplexing (OFDM) based IEEE 802.11a wireless local area networks (WLANs). For conventional single-carrier, single-antenna systems, a general feedforward symbol-timing estimation framework is developed based on the conditional maximum likelihood principle. The proposed algorithm is applied to linear modulations and two commonly used continuous phase modulations: MSK and GMSK. The performance of the proposed estimator is analyzed analytically and via simulations. Moreover, using the newly developed general estimation framework, all the previously proposed digital blind feedforward symbol timing estimators employing second-order statistics are cast into a unified framework. The finite sample mean-square error expression for this class of estimators is established and the best estimators are determined. Simulation results are presented to corroborate the analytical results. Moving on to single-carrier, multiple-antenna systems, we present two algorithms. The first algorithm is based on a heuristic argument and it improves the optimum sample selection algorithm by Naguib et al. so that accurate timing estimates can be obtained even if the oversampling ratio is small. The performance of the proposed algorithm is analyzed both analytically and via simulations. The second algorithm is based on the maximum likelihood principle. The data aided (DA) and non-data aided (NDA) ML symbol timing estimators and their cor- responding CCRB and MCRB in MIMO correlated ??at-fading channels are derived. It is shown that the improved algorithm developed based on the heuristic argument is just a special case of the DA ML estimator. Simulation results under different operating conditions are given to assess and compare the performances of the DA and NDA ML estimators with respect to their corresponding CCRBs and MCRBs. In the last part of this dissertation, the ML timing synchronizer for IEEE 802.11a WLANs on frequency-selective fading channels is developed. The proposed algorithm is compared with four of the most representative timing synchronization algorithms, one specically designed for IEEE 802.11a WLANs and three other algorithms designed for general OFDM frame synchronization.
167

Space-Time Block Coded OFDM Systems with Pseudo Random Cyclic Postfix

Li, You-De 04 August 2008 (has links)
Orthogonal frequency division multiplexing (OFDM) due to the robustness to the effect of multipath fading and having high spectral efficiency, it has become a good candidate of wireless communications systems. The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). Usually in the transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration, which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple transmit antenna and multiple receive antenna, which exploits the spatial diversity, can be used to further enhance the channel capacity and achieve high data-rate. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. Compared with CP-OFDM, it overcomes the channel null problem. For ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, as SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13], we extend the PRCP-OFDM to the MIMO case with space-time block coding. Via computer simulation, we verify that the performance is improved, in terms of the accuracy of channel estimation and symbol error rate (SER).
168

The Space-Time Block Coded in Pseudo Random Cyclic Postfix OFDM Systems with Blind Channel Shortening Algorithm

Chang, Chun-Yi 18 August 2009 (has links)
The Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions .The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). In the traditional transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration and joint a blind channel shortening algorithm which named MERRY algorithm [18], which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple input and multiple output (MIMO) system, which exploits the spatial diversity, it can be used to further enhance the channel capacity and achieve high data-rate, and we extend the PRCP-OFDM to the MIMO case with space-time block coding. In redundancy insufficient case, the blind channel shortening algorithm be adopted for suppressing the IBI. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. For CP-OFDM, it overcomes the channel null problem. Compared with ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, when SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13]. Via computer simulation, we verify that the performance is improved.
169

Novel Blind ST-BC MIMO-CDMA Receiver with Adaptive Constant Modulus-GSC-RLS Algorithm in Multipath Channel

Cheng, Ming-Kai 18 August 2009 (has links)
In this thesis, we present a new hybrid pre-coded direct-sequence code division multiple access (DS-CDMA) system framework that use the multiple-input multiple-output (MIMO) antennas along with Alamouti¡¦s space-time block code (ST-BC). In the transmitter, the idea of hybrid pre-coded is exploited. It not only used to counteract the inter-symbol interference (ISI) introduced by the channel fading duo to multipath propagation but also very useful for exacting the phase of channel by appropriate design, which is not adopted in the conventional blind receiver. Under this structure, we propose a new blind adaptive MIMO-CDMA receiver based on the linearly constrained constant modulus (LCCM) criterion. To reduce the complexity of receiver design, framework of the generalized sidelobe canceller (GSC) associated with the recursive least square (RLS) algorithm is adopted for implementing the LCCM MIMO-CDMA receiver, and use gradient method to track the desired user¡¦s amplitude, simultaneously. Via computer simulations, advantages of the proposed scheme will be verified. Compared to the conventional blind Capon receiver, we will show that the performance of the proposed scheme is more robust against inaccuracies in the acquisition of the desired user¡¦s timing.
170

Unitary space-time transmit diversity for multiple antenna self-interference suppression /

Anderson, Adam L. January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2004. / Includes bibliographical references (p. 73).

Page generated in 0.0876 seconds