Spelling suggestions: "subject:"spacetime geometry"" "subject:"spacetimes geometry""
1 |
Casual relations of the manifold of light raysNatario, Jose Antonio Maciel January 2000 (has links)
No description available.
|
2 |
Homogeneity in supergravityHustler, Noel January 2016 (has links)
This thesis is divided into three main parts. In the first of these (comprising chapters 1 and 2) we present the physical context of the research and cover the basic geometric background we will need to use throughout the rest of this thesis. In the second part (comprising chapters 3 to 5) we motivate and develop the strong homogeneity theorem for supergravity backgrounds. We go on to prove it directly for a number of top-dimensional Poincaré supergravities and furthermore demonstrate how it also generically applies to dimensional reductions of those theories. In the third part (comprising chapters 6 and 7) we show how further specialising to the case of symmetric backgrounds allows us to compute complete classifications of such backgrounds. We demonstrate this by classifying all symmetric type IIB supergravity backgrounds. Next we apply an algorithm for computing the supersymmetry of symmetric backgrounds and use this to classify all supersymmetric symmetric M-theory backgrounds.
|
3 |
Tensorial spacetime geometries and background-independent quantum field theoryRätzel, Dennis January 2013 (has links)
Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry.
In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation.
In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes. / Bekanntermaßen hat Albert Einstein die Geometrie der Raumzeit an den Maxwell-Gleichungen abgelesen. Heutzutage nehmen wie diese Geometrie so ernst, dass unsere fundamentale Materietheorie, das Standardmodell der Teilchenphysik, darauf beruht. Sobald es jedoch um die Physik außerhalb des Sonnensystems geht, scheinen einige Dinge unverstanden zu sein. Unabhängige Beobachtungsreihen zeigen, dass wir Konzepte wie dunkle Materie und dunkle Energie brauchen um unsere Modelle mit den Beobachtungen in Einklang zu bringen. Diese Konzepte passen aber nicht in das Standardmodell der Teilchenphysik. Um dieses Problem zu überwinden, müssen wir zumindest offen sein für Materiefelder mit Kinematiken und Dynamiken die über das Standardmodell hinaus gehen. Diese Materiefelder könnten dann aber auch durchaus zu anderen Raumzeitgeometrien gehören. Das ist die Grundlage dieser Arbeit: sie untersucht die zugehörigen Raumzeitgeometrien und beschäftigt sich mit der Quantisierung solcher Materiefelder unabhängig von jeder Hintergrundgeometrie.
Im ersten Teil dieser Arbeit werden Bedingungen identifiziert, die eine allgemeine tensorielle Geometrie erfüllen muss um als sinnvolle Raumzeitgeometrie dienen zu können. Die Kinematik masseloser und massiver Punktteilchen auf solchen Raumzeitgeometrien werden eingeführt und die physikalischen Implikationen werden untersucht. Zusätzlich werden Feldgleichungen für massive Materiefelder konstruiert, wie zum Beispiel eine modifizierte Dirac-Gleichung.
Im zweiten Teil wird eine hintergrundunabhängige Formulierung der Quantenfeldtheorie, die General Boundary Formulation, betrachtet. Die General Boundary Formulation wird dann auf den Unruh-Effekt angewendet und erste Versuche werden unternommen massive Materiefelder auf tensoriellen Raumzeiten zu quantisieren.
|
4 |
Gravity actions from matter actionsWitte, Christof 16 June 2014 (has links)
Ausgehend von der Forderung, dass die Dynamik klassischer Materiefelder auf einer glatten Mannigfaltigkeit prädiktiv und quantisierbar sein muss, leiten wir einen Satz von „Mastergleichungen“ her, deren Lösungen die Dynamik (in Form einer Lagrangedichte) der den Materiegleichungen zugrundeliegenden Geometrie beschreiben. Es gelingt also das physikalische Problem der Suche nach geeigneten Gravitationsdynamiken für eine beliebige tensorielle Raumzeitgeometrie, die physikalische Materie tragen kann, in die bloß noch mathematische Frage nach der Lösung eines Systems von linearen partiellen Differentialgleichungen zu reformulieren. Dieses Ergebnis fußt auf der Einsicht, dass die Forderung nach der Prädiktivität und Quantisierbarkeit einer Materietheorie zunächst die möglichen Klassen der zugrundeliegenden Raumzeitgeometrien auf solche beschränkt, die bi-hyperbolisch sind und die Unterscheidung von positiven und negativen Energien zulassen. Gleichzeitig stellen solche Materietheorien bereits alle kinematischen Strukturen zur Verfügung, die nötig sind, um die Dynamik der Geometrie als Anfangswertproblem zu formulieren. Die Mastergleichungen stellen dann einen Ausdruck dafür dar, dass die Lagrangefunktion der Gravitationsdynamik, die die zeitliche Entwicklung von geometrischen Anfangsdaten beschreibt, eine Darstellung der Hyperflächendeformationsalgebra sein muss, welche sich ausgehend von der Dynamik der Materietheorie direkt berechnen lässt. Wir geben eine allgemeine Vorgehensweise an, mit der sich die Mastergleichungen für eine beliebige tensorielle Raumzeitgeometrie herleiten lassen und illustrieren dieses Verfahren anhand von vier physikalisch relevanten Beispielen. Die Arbeit wird abgerundet durch ein Studium von Energie-Impuls-Tensoren von Materie auf tensoriellen Raumzeiten. / Starting from classical matter dynamics on a smooth manifold that are required to be predictive and quantizable, we derive a set of `gravitational master equations'' that determine the Lagrangian describing the dynamics of the geometry on which the matter dynamics are defined. We thus convert the physical problem of finding admissible gravitational dynamics for any tensorial geometry that can support physical matter equations into the clear mathematical task of solving a system of linear partial differential equations. This result builds on the insight that predictive and quantizable matter dynamics, on the one hand, restrict the class of admissible spacetime geometries to those that are bi-hyperbolic and energy-distinguishing, and, on the other hand, provide the necessary kinematical structure needed to formulate spacetime geometry dynamics as an initial value problem. The gravitational master equations then express the fact that the Lagrangian of the gravitational dynamics must arise as a representation of the algebra of hypersurface deformations---which can be calculated from the kinematical structure imprinted on the geometry by the matter field dynamics---on a suitable geometric phase space. We provide a general prescription of how to obtain the gravitational master equations for any candidate geometry and illustrate our procedure by way of four instructive examples. We solve the master equations for metric geometry supporting Maxwell theory, finding Einstein-Hilbert dynamics as the unique solution, and for a non-trivial composite geometry supporting modified Dirac dynamics. We also discuss generalized energy-momentum tensors of matter fields and their role as sources of the gravitational dynamics obtained from the gravitational master equations.
|
Page generated in 0.0718 seconds