• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFICACY OF SPARSE REGRESSION FOR LINEAR STRUCTURAL SYSTEM IDENTIFICATION

Katwal, Sadiksha 01 August 2024 (has links) (PDF)
The capability of sparse regression with Least Absolute Shrinkage and Selection Operator (LASSO) in modal identification of a simple system and predicting system response is remarkable. However, it has limitations when applied to more complex structure, particularly in equation discovery and response prediction. Despite these challenges, sparse regression demonstrates superior performance in linear system identification compared to Natural Excitation Technique (NExT) coupled with Eigensystem Realization Algorithm (ERA), especially in identifying higher modes and estimating damping ratios with reduced error.Findings indicate that while sparse regression is highly effective for simple systems, its application to real-world structures requires further exploration. The thesis concludes with recommendations for practical validation of sparse regression on actual structures and its comparison with alternative methods to assess its real-world efficacy in structural health monitoring.
2

Design techniques for efficient sparse regression codes

Greig, Adam January 2018 (has links)
Sparse regression codes (SPARCs) are a recently introduced coding scheme for the additive white Gaussian noise channel, for which polynomial time decoding algorithms have been proposed which provably achieve the Shannon channel capacity. One such algorithm is the approximate message passing (AMP) decoder. However, directly implementing these decoders does not yield good empirical performance at practical block lengths. This thesis develops techniques for improving both the error rate performance, and the time and memory complexity, of the AMP decoder. It focuses on practical and efficient implementations for both single- and multi-user scenarios. A key design parameter for SPARCs is the power allocation, which is a vector of coefficients which determines how codewords are constructed. In this thesis, novel power allocation schemes are proposed which result in several orders of magnitude improvement to error rate compared to previous designs. Further improvements to error rate come from investigating the role of other SPARC construction parameters, and from performing an online estimation of a key AMP parameter instead of using a pre-computed value. Another significant improvement to error rates comes from a novel three-stage decoder which combines SPARCs with an outer code based on low-density parity-check codes. This construction protects only vulnerable sections of the SPARC codeword with the outer code, minimising the impact to the code rate. The combination provides a sharp waterfall in bit error rates and very low overall codeword error rates. Two changes to the basic SPARC structure are proposed to reduce computational and memory complexity. First, the design matrix is replaced with an efficient in-place transform based on Hadamard matrices, which dramatically reduces the overall decoder time and memory complexity with no impact on error rate. Second, an alternative SPARC design is developed, called Modulated SPARCs. These are shown to also achieve the Shannon channel capacity, while obtaining similar empirical error rates to the original SPARC, and permitting a further reduction in time and memory complexity. Finally, SPARCs are implemented for the broadcast and multiple access channels, and for the multiple description and Wyner-Ziv source coding models. Designs for appropriate power allocations and decoding strategies are proposed and are found to give good empirical results, demonstrating that SPARCs are also well suited to these multi-user settings.
3

Combining scientific computing and machine learning techniques to model longitudinal outcomes in clinical trials.

Subramanian, Harshavardhan January 2021 (has links)
Scientific machine learning (SciML) is a new branch of AI research at the edge of scientific computing (Sci) and machine learning (ML). It deals with efficient amalgamation of data-driven algorithms along with scientific computing to discover the dynamics of the time-evolving process. The output of such algorithms is represented in the form of a governing equation(s) (e.g., ordinary differential equation(s), ODE(s)), which one can solve then for any time point and, thus, obtain a rigorous prediction.  In this thesis, we present a methodology on how to incorporate the SciML approach in the context of clinical trials to predict IPF disease progression in the form of governing equation. Our proposed methodology also quantifies the uncertainties associated with the model by fitting 95\% high density interval (HDI) for the ODE parameters and 95\% posterior prediction interval for posterior predicted samples. We have also investigated the possibility of predicting later outcomes by using the observations collected at early phase of the study. We were successful in combining ML techniques, statistical methodologies and scientific computing tools such as bootstrap sampling, cubic spline interpolation, Bayesian inference and sparse identification of nonlinear dynamics (SINDy) to discover the dynamics behind the efficacy outcome as well as in quantifying the uncertainty of the parameters of the governing equation in the form of 95 \% HDI intervals. We compared the resulting model with the existed disease progression model described by the Weibull function. Based on the mean squared error (MSE) criterion between our ODE approximated values and population means of respective datasets, we achieved the least possible MSE of 0.133,0.089,0.213 and 0.057. After comparing these MSE values with the MSE values obtained after using Weibull function, for the third dataset and pooled dataset, our ODE model performed better in reducing error than the Weibull baseline model by 7.5\% and 8.1\%, respectively. Whereas for the first and second datasets, the Weibull model performed better in reducing errors by 1.5\% and 1.2\%, respectively. Comparing the overall performance in terms of MSE, our proposed model approximates the population means better in all the cases except for the first and second datasets, assuming the latter case's error margin is very small. Also, in terms of interpretation, our dynamical system model contains the mechanistic elements that can explain the decay/acceleration rate of the efficacy endpoint, which is missing in the Weibull model. However, our approach had a limitation in predicting final outcomes using a model derived from  24, 36, 48 weeks observations with good accuracy where as on the contrast, the Weibull model do not possess the predicting capability. However, the extrapolated trend based on 60 weeks of data was found to be close to population mean and the ODE model built on 72 weeks of data. Finally we highlight potential questions for the future work.
4

Bayesian Sparse Regression with Application to Data-driven Understanding of Climate

Das, Debasish January 2015 (has links)
Sparse regressions based on constraining the L1-norm of the coefficients became popular due to their ability to handle high dimensional data unlike the regular regressions which suffer from overfitting and model identifiability issues especially when sample size is small. They are often the method of choice in many fields of science and engineering for simultaneously selecting covariates and fitting parsimonious linear models that are better generalizable and easily interpretable. However, significant challenges may be posed by the need to accommodate extremes and other domain constraints such as dynamical relations among variables, spatial and temporal constraints, need to provide uncertainty estimates and feature correlations, among others. We adopted a hierarchical Bayesian version of the sparse regression framework and exploited its inherent flexibility to accommodate the constraints. We applied sparse regression for the feature selection problem of statistical downscaling of the climate variables with particular focus on their extremes. This is important for many impact studies where the climate change information is required at a spatial scale much finer than that provided by the global or regional climate models. Characterizing the dependence of extremes on covariates can help in identification of plausible causal drivers and inform extremes downscaling. We propose a general-purpose sparse Bayesian framework for covariate discovery that accommodates the non-Gaussian distribution of extremes within a hierarchical Bayesian sparse regression model. We obtain posteriors over regression coefficients, which indicate dependence of extremes on the corresponding covariates and provide uncertainty estimates, using a variational Bayes approximation. The method is applied for selecting informative atmospheric covariates at multiple spatial scales as well as indices of large scale circulation and global warming related to frequency of precipitation extremes over continental United States. Our results confirm the dependence relations that may be expected from known precipitation physics and generates novel insights which can inform physical understanding. We plan to extend our model to discover covariates for extreme intensity in future. We further extend our framework to handle the dynamic relationship among the climate variables using a nonparametric Bayesian mixture of sparse regression models based on Dirichlet Process (DP). The extended model can achieve simultaneous clustering and discovery of covariates within each cluster. Moreover, the a priori knowledge about association between pairs of data-points is incorporated in the model through must-link constraints on a Markov Random Field (MRF) prior. A scalable and efficient variational Bayes approach is developed to infer posteriors on regression coefficients and cluster variables. / Computer and Information Science
5

Quelques contributions à l'estimation de grandes matrices de précision / Some contributions to large precision matrix estimation

Balmand, Samuel 27 June 2016 (has links)
Sous l'hypothèse gaussienne, la relation entre indépendance conditionnelle et parcimonie permet de justifier la construction d'estimateurs de l'inverse de la matrice de covariance -- également appelée matrice de précision -- à partir d'approches régularisées. Cette thèse, motivée à l'origine par la problématique de classification d'images, vise à développer une méthode d'estimation de la matrice de précision en grande dimension, lorsque le nombre $n$ d'observations est petit devant la dimension $p$ du modèle. Notre approche repose essentiellement sur les liens qu'entretiennent la matrice de précision et le modèle de régression linéaire. Elle consiste à estimer la matrice de précision en deux temps. Les éléments non diagonaux sont tout d'abord estimés en considérant $p$ problèmes de minimisation du type racine carrée des moindres carrés pénalisés par la norme $ell_1$.Les éléments diagonaux sont ensuite obtenus à partir du résultat de l'étape précédente, par analyse résiduelle ou maximum de vraisemblance. Nous comparons ces différents estimateurs des termes diagonaux en fonction de leur risque d'estimation. De plus, nous proposons un nouvel estimateur, conçu de sorte à tenir compte de la possible contamination des données par des {em outliers}, grâce à l'ajout d'un terme de régularisation en norme mixte $ell_2/ell_1$. L'analyse non-asymptotique de la convergence de notre estimateur souligne la pertinence de notre méthode / Under the Gaussian assumption, the relationship between conditional independence and sparsity allows to justify the construction of estimators of the inverse of the covariance matrix -- also called precision matrix -- from regularized approaches. This thesis, originally motivated by the problem of image classification, aims at developing a method to estimate the precision matrix in high dimension, that is when the sample size $n$ is small compared to the dimension $p$ of the model. Our approach relies basically on the connection of the precision matrix to the linear regression model. It consists of estimating the precision matrix in two steps. The off-diagonal elements are first estimated by solving $p$ minimization problems of the type $ell_1$-penalized square-root of least-squares. The diagonal entries are then obtained from the result of the previous step, by residual analysis of likelihood maximization. This various estimators of the diagonal entries are compared in terms of estimation risk. Moreover, we propose a new estimator, designed to consider the possible contamination of data by outliers, thanks to the addition of a $ell_2/ell_1$ mixed norm regularization term. The nonasymptotic analysis of the consistency of our estimator points out the relevance of our method
6

CONTINUOUS RELAXATION FOR COMBINATORIAL PROBLEMS - A STUDY OF CONVEX AND INVEX PROGRAMS

Adarsh Barik (15359902) 27 April 2023 (has links)
<p>In this thesis, we study optimization problems which have a combinatorial aspect to them. Search space for such problems quickly grows large - exponentially - with respect to the problem dimension. Thus, exhaustive search becomes intractable and we need good relaxations to solve combinatorial problems efficiently. Another challenge arises due to the high dimensionality of such problems and lack of large number of samples. Our aim is to come up with innovative approaches that solve the problem in polynomial time and sample complexity. We discuss three combinatorial optimization problems and provide continuous relaxations for them. Our continuous relaxations involve both convex and nonconvex (invex) relaxations. Furthermore, we provide efficient first order algorithms to solve a general class of invex problems with provable convergence rate guarantees. The three combinatorial problems we study in this work are – learning the directed structure of a Bayesian network using blackbox data, fair sparse regression on a biased dataset where bias depends upon a hidden binary attribute and mixed linear regression. We propose convex relaxation for the first problem, while the other two are solved using invex relaxation. On the first problem, we come up with a novel notion of low rank representation of conditional probability tables for a Bayesian network and connect it to Fourier transformation of real valued set functions to recover the exact structure of the Bayesian networks. For the second problem, we propose a novel invex relaxation for the combinatorial version of sparse linear regression with fairness. For the final problem, we again use invex relaxation to learn a mixture of sparse linear regression models. We formally show correctness of our proposed methods and provide provable theoretical guarantees for efficient computational and sample complexity. We also develop efficient first order algorithms to solve invex problems. We provide convergence rate analysis for our proposed methods. Furthermore, we also discuss possible future research directions and the problems we want to tackle in future.</p>
7

Etude de l'épissage grâce à des techniques de régression parcimonieuse dans l'ère du séquençage haut débit de l'ARN / Deciphering splicing with sparse regression techniques in the era of high-throughput RNA sequencing.

Bernard, Elsa 21 September 2016 (has links)
Le nombre de gènes codant pour des protéines chez l’'homme, le vers rond et la mouche des fruits est du même ordre de grandeur. Cette absence de correspondance entre le nombre de gènes d’un eucaryote et sa complexité phénotypique s’explique en partie par le caractère alternatif de l’épissage.L'épissage alternatif augmente considérablement le répertoire fonctionnel de protéines codées par un nombre limité de gènes. Ce mécanisme, très actif lors du développement embryonnaire, participe au devenir cellulaire. De nombreux troubles génétiques, hérités ou acquis (en particulier certains cancers), se caractérisent par une altération de son fonctionnement.Les technologies de séquençage à haut débit de l'ARN donnent accès a une information plus riche sur le mécanisme de l’épissage. Cependant, si la lecture à haut débit des séquences d’ARN est plus rapide et moins coûteuse, les données qui en sont issues sont complexes et nécessitent le développement d’outils algorithmiques pour leur interprétation. En particulier, la reconstruction des transcrits alternatifs requiert une étape de déconvolution non triviale.Dans ce contexte, cette thèse participe à l'étude des événements d'épissage et des transcrits alternatifs sur des données de séquençage à haut débit de l'ARN.Nous proposons de nouvelles méthodes pour reconstruire et quantifier les transcrits alternatifs de façon plus efficace et précise. Nos contributions méthodologiques impliquent des techniques de régression parcimonieuse, basées sur l'optimisation convexe et sur des algorithmes de flots. Nous étudions également une procédure pour détecter des anomalies d'épissage dans un contexte de diagnostic clinique. Nous suggérons un protocole expérimental facilement opérant et développons de nouveaux modèles statistiques et algorithmes pour quantifier des événements d’épissage et mesurer leur degré d'anormalité chez le patient. / The number of protein-coding genes in a human, a nematodeand a fruit fly are roughly equal.The paradoxical miscorrelation between the number of genesin an organism's genome and its phenotypic complexityfinds an explanation in the alternative natureof splicing in higher organisms.Alternative splicing largely increases the functionaldiversity of proteins encoded by a limitednumber of genes.It is known to be involved incell fate decisionand embryonic development,but also appears to be dysregulatedin inherited and acquired human genetic disorders,in particular in cancers.High-throughput RNA sequencing technologiesallow us to measure and question splicingat an unprecedented resolution.However, while the cost of sequencing RNA decreasesand throughput increases,many computational challenges arise from the discrete and local nature of the data.In particular, the task of inferring alternative transcripts requires a non-trivial deconvolution procedure.In this thesis, we contribute to deciphering alternative transcript expressions andalternative splicing events fromhigh-throughput RNA sequencing data.We propose new methods to accurately and efficientlydetect and quantify alternative transcripts.Our methodological contributionslargely rely on sparse regression techniquesand takes advantage ofnetwork flow optimization techniques.Besides, we investigate means to query splicing abnormalitiesfor clinical diagnosis purposes.We suggest an experimental protocolthat can be easily implemented in routine clinical practice,and present new statistical models and algorithmsto quantify splicing events and measure how abnormal these eventsmight be in patient data compared to wild-type situations.
8

Elimination dynamique : accélération des algorithmes d'optimisation convexe pour les régressions parcimonieuses / Dynamic screening : accelerating convex optimization algorithms for sparse regressions

Bonnefoy, Antoine 15 April 2016 (has links)
Les algorithmes convexes de résolution pour les régressions linéaires parcimonieuses possèdent de bonnes performances pratiques et théoriques. Cependant, ils souffrent tous des dimensions du problème qui dictent la complexité de chacune de leur itération. Nous proposons une approche pour réduire ce coût calculatoire au niveau de l'itération. Des stratégies récentes s'appuyant sur des tests d'élimination de variables ont été proposées pour accélérer la résolution des problèmes de régressions parcimonieuse pénalisées tels que le LASSO. Ces approches reposent sur l'idée qu'il est profitable de dédier un petit effort de calcul pour localiser des atomes inactifs afin de les retirer du dictionnaire dans une étape de prétraitement. L'algorithme de résolution utilisant le dictionnaire ainsi réduit convergera alors plus rapidement vers la solution du problème initial. Nous pensons qu'il existe un moyen plus efficace pour réduire le dictionnaire et donc obtenir une meilleure accélération : à l'intérieur de chaque itération de l'algorithme, il est possible de valoriser les calculs originalement dédiés à l'algorithme pour obtenir à moindre coût un nouveau test d'élimination dont l'effet d'élimination augmente progressivement le long des itérations. Le dictionnaire est alors réduit de façon dynamique au lieu d'être réduit de façon statique, une fois pour toutes, avant la première itération. Nous formalisons ce principe d'élimination dynamique à travers une formulation algorithmique générique, et l'appliquons en intégrant des tests d'élimination existants, à l'intérieur de plusieurs algorithmes du premier ordre pour résoudre les problèmes du LASSO et Group-LASSO. / Applications in signal processing and machine learning make frequent use of sparse regressions. Resulting convex problems, such as the LASSO, can be efficiently solved thanks to first-order algorithms, which are general, and have good convergence properties. However those algorithms suffer from the dimension of the problem, which impose the complexity of their iterations. In this thesis we study approaches, based on screening tests, aimed at reducing the computational cost at the iteration level. Such approaches build upon the idea that it is worth dedicating some small computational effort to locate inactive atoms and remove them from the dictionary in a preprocessing stage so that the regression algorithm working with a smaller dictionary will then converge faster to the solution of the initial problem. We believe that there is an even more efficient way to screen the dictionary and obtain a greater acceleration: inside each iteration of the regression algorithm, one may take advantage of the algorithm computations to obtain a new screening test for free with increasing screening effects along the iterations. The dictionary is henceforth dynamically screened instead of being screened statically, once and for all, before the first iteration. Our first contribution is the formalisation of this principle and its application to first-order algorithms, for the resolution of the LASSO and Group-LASSO. In a second contribution, this general principle is combined to active-set methods, whose goal is also to accelerate the resolution of sparse regressions. Applying the two complementary methods on first-order algorithms, leads to great acceleration performances.
9

Data-driven modeling and simulation of spatiotemporal processes with a view toward applications in biology

Maddu Kondaiah, Suryanarayana 11 January 2022 (has links)
Mathematical modeling and simulation has emerged as a fundamental means to understand physical process around us with countless real-world applications in applied science and engineering problems. However, heavy reliance on first principles, symmetry relations, and conservation laws has limited its applicability to a few scientific domains and even few real-world scenarios. Especially in disciplines like biology the underlying living constituents exhibit a myriad of complexities like non-linearities, non-equilibrium physics, self-organization and plasticity that routinely escape mathematical treatment based on governing laws. Meanwhile, recent decades have witnessed rapid advancement in computing hardware, sensing technologies, and algorithmic innovations in machine learning. This progress has helped propel data-driven paradigms to achieve unprecedented practical success in the fields of image processing and computer vision, natural language processing, autonomous transport, and etc. In the current thesis, we explore, apply, and advance statistical and machine learning strategies that help bridge the gap between data and mathematical models, with a view toward modeling and simulation of spatiotemporal processes in biology. As first, we address the problem of learning interpretable mathematical models of biologial process from limited and noisy data. For this, we propose a statistical learning framework called PDE-STRIDE based on the theory of stability selection and ℓ0-based sparse regularization for parsimonious model selection. The PDE-STRIDE framework enables model learning with relaxed dependencies on tuning parameters, sample-size and noise-levels. We demonstrate the practical applicability of our method on real-world data by considering a purely data-driven re-evaluation of the advective triggering hypothesis explaining the embryonic patterning event in the C. elegans zygote. As a next natural step, we extend our PDE-STRIDE framework to leverage prior knowledge from physical principles to learn biologically plausible and physically consistent models rather than models that simply fit the data best. For this, we modify the PDE-STRIDE framework to handle structured sparsity constraints for grouping features which enables us to: 1) enforce conservation laws, 2) extract spatially varying non-observables, 3) encode symmetry relations associated with the underlying biological process. We show several applications from systems biology demonstrating the claim that enforcing priors dramatically enhances the robustness and consistency of the data-driven approaches. In the following part, we apply our statistical learning framework for learning mean-field deterministic equations of active matter systems directly from stochastic self-propelled active particle simulations. We investigate two examples of particle models which differs in the microscopic interaction rules being used. First, we consider a self-propelled particle model endowed with density-dependent motility character. For the chosen hydrodynamic variables, our data-driven framework learns continuum partial differential equations that are in excellent agreement with analytical derived coarse-grain equations from Boltzmann approach. In addition, our structured sparsity framework is able to decode the hidden dependency between particle speed and the local density intrinsic to the self-propelled particle model. As a second example, the learning framework is applied for coarse-graining a popular stochastic particle model employed for studying the collective cell motion in epithelial sheets. The PDE-STRIDE framework is able to infer novel PDE model that quantitatively captures the flow statistics of the particle model in the regime of low density fluctuations. Modern microscopy techniques produce GigaBytes (GB) and TeraBytes (TB) of data while imaging spatiotemporal developmental dynamics of living organisms. However, classical statistical learning based on penalized linear regression models struggle with issues like accurate computation of derivatives in the candidate library and problems with computational scalability for application to “big” and noisy data-sets. For this reason we exploit the rich parameterization of neural networks that can efficiently learn from large data-sets. Specifically, we explore the framework of Physics-Informed Neural Networks (PINN) that allow for seamless integration of physics priors with measurement data. We propose novel strategies for multi-objective optimization that allow for adapting PINN architecture to multi-scale modeling problems arising in biology. We showcase application examples for both forward and inverse modeling of mesoscale active turbulence phenomenon observed in dense bacterial suspensions. Employing our strategies, we demonstrate orders of magnitude gain in accuracy and convergence in comparison with conventional formulation for solving multi-objective optimization in PINNs. In the concluding chapter of the thesis, we skip model interpretability and focus on learning computable models directly from noisy data for the purpose of pure dynamics forecasting. We propose STENCIL-NET, an artificial neural network architecture that learns solution adaptive spatial discretization of an unknown PDE model that can be stably integrated in time with negligible loss in accuracy. To support this claim, we present numerical experiments on long-term forecasting of chaotic PDE solutions on coarse spatio-temporal grids, and also showcase de-noising application that help decompose spatiotemporal dynamics from the noise in an equation-free manner.
10

Prédiction de suites individuelles et cadre statistique classique : étude de quelques liens autour de la régression parcimonieuse et des techniques d'agrégation / Prediction of individual sequences and prediction in the statistical framework : some links around sparse regression and aggregation techniques

Gerchinovitz, Sébastien 12 December 2011 (has links)
Cette thèse s'inscrit dans le domaine de l'apprentissage statistique. Le cadre principal est celui de la prévision de suites déterministes arbitraires (ou suites individuelles), qui recouvre des problèmes d'apprentissage séquentiel où l'on ne peut ou ne veut pas faire d'hypothèses de stochasticité sur la suite des données à prévoir. Cela conduit à des méthodes très robustes. Dans ces travaux, on étudie quelques liens étroits entre la théorie de la prévision de suites individuelles et le cadre statistique classique, notamment le modèle de régression avec design aléatoire ou fixe, où les données sont modélisées de façon stochastique. Les apports entre ces deux cadres sont mutuels : certaines méthodes statistiques peuvent être adaptées au cadre séquentiel pour bénéficier de garanties déterministes ; réciproquement, des techniques de suites individuelles permettent de calibrer automatiquement des méthodes statistiques pour obtenir des bornes adaptatives en la variance du bruit. On étudie de tels liens sur plusieurs problèmes voisins : la régression linéaire séquentielle parcimonieuse en grande dimension (avec application au cadre stochastique), la régression linéaire séquentielle sur des boules L1, et l'agrégation de modèles non linéaires dans un cadre de sélection de modèles (régression avec design fixe). Enfin, des techniques stochastiques sont utilisées et développées pour déterminer les vitesses minimax de divers critères de performance séquentielle (regrets interne et swap notamment) en environnement déterministe ou stochastique. / The topics addressed in this thesis lie in statistical machine learning. Our main framework is the prediction of arbitrary deterministic sequences (or individual sequences). It includes online learning tasks for which we cannot make any stochasticity assumption on the data to be predicted, which requires robust methods. In this work, we analyze several connections between the theory of individual sequences and the classical statistical setting, e.g., the regression model with fixed or random design, where stochastic assumptions are made. These two frameworks benefit from one another: some statistical methods can be adapted to the online learning setting to satisfy deterministic performance guarantees. Conversely, some individual-sequence techniques are useful to tune the parameters of a statistical method and to get risk bounds that are adaptive to the unknown variance. We study such connections for several connected problems: high-dimensional online linear regression under a sparsity scenario (with an application to the stochastic setting), online linear regression on L1-balls, and aggregation of nonlinear models in a model selection framework (regression on a fixed design). We also use and develop stochastic techniques to compute the minimax rates of game-theoretic online measures of performance (e.g., internal and swap regrets) in a deterministic or stochastic environment.

Page generated in 0.0584 seconds