• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Design of Vague Spatial Data Warehouses

Lopes Siqueira, Thiago Luis 07 December 2015 (has links) (PDF)
Spatial data warehouses (SDW) and spatial online analytical processing (SOLAP) enhance decision making by enabling spatial analysis combined with multidimensional analytical queries. A SDW is an integrated and voluminous multidimensional database containing both conventional and spatial data. SOLAP allows querying SDWs with multidimensional queries that select spatial data that satisfy a given topological relationship and that aggregate spatial data. Existing SDW and SOLAP applications mostly consider phenomena represented by spatial data having exact locations and sharp boundaries. They neglect the fact that spatial data may be affected by imperfections, such as spatial vagueness, which prevents distinguishing an object from its neighborhood. A vague spatial object does not have a precisely defined boundary and/or interior. Thus, it may have a broad boundary and a blurred interior, and is composed of parts that certainly belong to it and parts that possibly belong to it. Although several real-world phenomena are characterized by spatial vagueness, no approach in the literature addresses both spatial vagueness and the design of SDWs nor provides multidimensional analysis over vague spatial data. These shortcomings motivated the elaboration of this doctoral thesis, which addresses both vague spatial data warehouses (vague SDWs) and vague spatial online analytical processing (vague SOLAP). A vague SDW is a SDW that comprises vague spatial data, while vague SOLAP allows querying vague SDWs. The major contributions of this doctoral thesis are: (i) the Vague Spatial Cube (VSCube) conceptual model, which enables the creation of conceptual schemata for vague SDWs using data cubes; (ii) the Vague Spatial MultiDim (VSMultiDim) conceptual model, which enables the creation of conceptual schemata for vague SDWs using diagrams; (iii) guidelines for designing relational schemata and integrity constraints for vague SDWs, and for extending the SQL language to enable vague SOLAP; (iv) the Vague Spatial Bitmap Index (VSB-index), which improves the performance to process queries against vague SDWs. The applicability of these contributions is demonstrated in two applications of the agricultural domain, by creating conceptual schemata for vague SDWs, transforming these conceptual schemata into logical schemata for vague SDWs, and efficiently processing queries over vague SDWs. / Les entrepôts de données spatiales (EDS) et l'analyse en ligne spatiale (ALS) améliorent la prise de décision en permettant l'analyse spatiale combinée avec des requêtes analytiques multidimensionnelles. Un EDS est une base de données multidimensionnelle intégrée et volumineuse qui contient des données classiques et des données spatiales. L'ALS permet l'interrogation des EDS avec des requêtes multidimensionnelles qui sélectionnent des données spatiales qui satisfont une relation topologique donnée et qui agrègent les données spatiales. Les EDS et l'ALS considèrent essentiellement des phénomènes représentés par des données spatiales ayant une localisation exacte et des frontières précises. Ils négligent que les données spatiales peuvent être affectées par des imperfections, comme l'imprécision spatiale, ce qui empêche de distinguer précisément un objet de son entourage. Un objet spatial vague n'a pas de frontière et/ou un intérieur précisément définis. Ainsi, il peut avoir une frontière large et un intérieur flou, et est composé de parties qui lui appartiennent certainement et des parties qui lui appartiennent éventuellement. Bien que plusieurs phénomènes du monde réel sont caractérisés par l'imprécision spatiale, il n'y a pas dans la littérature des approches qui adressent en même temps l'imprécision spatiale et la conception d'EDS ni qui fournissent une analyse multidimensionnelle des données spatiales vagues. Ces lacunes ont motivé l'élaboration de cette thèse de doctorat, qui adresse à la fois les entrepôts de données spatiales vagues (EDS vagues) et l'analyse en ligne spatiale vague (ALS vague). Un EDS vague est un EDS qui comprend des données spatiales vagues, tandis que l'ALS vague permet d'interroger des EDS vagues. Les contributions majeures de cette thèse de doctorat sont: (i) le modèle conceptuel Vague Spatial Cube (VSCube), qui permet la création de schémas conceptuels pour des EDS vagues à l'aide de cubes de données; (ii) le modèle conceptuel Vague Spatial MultiDim (VSMultiDim), qui permet la création de schémas conceptuels pour des EDS vagues à l'aide de diagrammes; (iii) des directives pour la conception de schémas relationnels et des contraintes d'intégrité pour des EDS vagues, et pour l'extension du langage SQL pour permettre l'ALS vague; (iv) l'indice Vague Spatial Bitmap (VSB-index) qui améliore la performance pour traiter les requêtes adressées à des EDS vagues. L'applicabilité de ces contributions est démontrée dans deux applications dans le domaine agricole, en créant des schémas conceptuels des EDS vagues, la transformation de ces schémas conceptuels en schémas logiques pour des EDS vagues, et le traitement efficace des requêtes sur des EDS vagues. / O data warehouse espacial (DWE) é um banco de dados multidimensional integrado e volumoso que armazena dados espaciais e dados convencionais. Já o processamento analítico-espacial online (SOLAP) permite consultar o DWE, tanto pela seleção de dados espaciais que satisfazem um relacionamento topológico, quanto pela agregação dos dados espaciais. Deste modo, DWE e SOLAP beneficiam o suporte a tomada de decisão. As aplicações de DWE e SOLAP abordam majoritarimente fenômenos representados por dados espaciais exatos, ou seja, que assumem localizações e fronteiras bem definidas. Contudo, tais aplicações negligenciam dados espaciais afetados por imperfeições, tais como a vagueza espacial, a qual interfere na identificação precisa de um objeto e de seus vizinhos. Um objeto espacial vago não tem sua fronteira ou seu interior precisamente definidos. Além disso, é composto por partes que certamente pertencem a ele e partes que possivelmente pertencem a ele. Apesar de inúmeros fenômenos do mundo real serem caracterizados pela vagueza espacial, na literatura consultada não se identificaram trabalhos que considerassem a vagueza espacial no projeto de DWE e nem para consultar o DWE. Tal limitação motivou a elaboração desta tese de doutorado, a qual introduz os conceitos de DWE vago e de SOLAP vago. Um DWE vago é um DWE que armazena dados espaciais vagos, enquanto que SOLAP vago provê os meios para consultar o DWE vago. Nesta tese, o projeto de DWE vago é abordado e as principais contribuições providas são: (i) o modelo conceitual VSCube que viabiliza a criação de um cubos de dados multidimensional para representar o esquema conceitual de um DWE vago; (ii) o modelo conceitual VSMultiDim que permite criar um diagrama para representar o esquema conceitual de um DWE vago; (iii) diretrizes para o projeto lógico do DWE vago e de suas restrições de integridade, e para estender a linguagem SQL visando processar as consultas de SOLAP vago no DWE vago; e (iv) o índice VSB-index que aprimora o desempenho do processamento de consultas no DWE vago. A aplicabilidade dessas contribuições é demonstrada em dois estudos de caso no domínio da agricultura, por meio da criação de esquemas conceituais de DWE vago, da transformação dos esquemas conceituais em esquemas lógicos de DWE vago, e do processamento de consultas envolvendo as regiões vagas do DWE vago. / Doctorat en Sciences de l'ingénieur et technologie / Location of the public defense: Universidade Federal de São Carlos, São Carlos, SP, Brazil. / info:eu-repo/semantics/nonPublished
2

Designing Conventional, Spatial, and Temporal Data Warehouses: Concepts and Methodological Framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems. In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them. On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process. To ensure the correctness of the proposed conceptual models, i.e., with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.
3

The design of vague spatial data warehouses

Siqueira, Thiago Luís Lopes 07 December 2015 (has links)
Made available in DSpace on 2016-06-02T19:04:00Z (GMT). No. of bitstreams: 1 6824.pdf: 22060515 bytes, checksum: bde19feb7a6e296214aebe081f2d09de (MD5) Previous issue date: 2015-12-07 / Universidade Federal de Minas Gerais / O data warehouse espacial (DWE) é um banco de dados multidimensional integrado e volumoso que armazena dados espaciais e dados convencionais. Já o processamento analítico espacial online (SOLAP) permite consultar o DWE, tanto pela seleção de dados espaciais que satisfazem um relacionamento topológico, quanto pela agregação dos dados espaciais. Deste modo, DWE e SOLAP beneficiam o suporte a tomada de decisão. As aplicações de DWE e SOLAP abordam majoritarimente fenômenos representados por dados espaciais exatos, ou seja, que assumem localizações e fronteiras bem definidas. Contudo, tais aplicações negligenciam dados espaciais afetados por imperfeições, tais como a vagueza espacial, a qual interfere na identificação precisa de um objeto e de seus vizinhos. Um objeto espacial vago não tem sua fronteira ou seu interior precisamente definidos. Além disso, é composto por partes que certamente pertencem a ele e partes que possivelmente pertencem a ele. Apesar de inúmeros fenômenos do mundo real serem caracterizados pela vagueza espacial, na literatura consultada não se identificaram trabalhos que considerassem a vagueza espacial no projeto de DWE e nem para consultar o DWE. Tal limitação motivou a elaboração desta tese de doutorado, a qual introduz os conceitos de DWE vago e de SOLAP vago. Um DWE vago é um DWE que armazena dados espaciais vagos, enquanto que SOLAP vago provê os meios para consultar o DWE vago. Nesta tese, o projeto de DWE vago é abordado e as principais contribuições providas são: (i) o modelo conceitual VSCube que viabiliza a criação de um cubos de dados multidimensional para representar o esquema conceitual de um DWE vago; (ii) o modelo conceitual VSMultiDim que permite criar um diagrama para representar o esquema conceitual de um DWE vago; (iii) diretrizes para o projeto lógico do DWE vago e de suas restrições de integridade, e para estender a linguagem SQL visando processar as consultas de SOLAP vago no DWE vago; e (iv) o índice VSB-index que aprimora o desempenho do processamento de consultas no DWE vago. A aplicabilidade dessas contribuições é demonstrada em dois estudos de caso no domínio da agricultura, por meio da criação de esquemas conceituais de DWE vago, da transformação dos esquemas conceituais em esquemas lógicos de DWE vago, e do processamento de consultas envolvendo as regiões vagas do DWE vago. / Spatial data warehouses (SDW) and spatial online analytical processing (SOLAP) enhance decision making by enabling spatial analysis combined with multidimensional analytical queries. A SDW is an integrated and voluminous multidimensional database containing both conventional and spatial data. SOLAP allows querying SDWs with multidimensional queries that select spatial data that satisfy a given topological relationship and that aggregate spatial data. Existing SDW and SOLAP applications mostly consider phenomena represented by spatial data having exact locations and sharp boundaries. They neglect the fact that spatial data may be affected by imperfections, such as spatial vagueness, which prevents distinguishing an object from its neighborhood. A vague spatial object does not have a precisely defined boundary and/or interior. Thus, it may have a broad boundary and a blurred interior, and is composed of parts that certainly belong to it and parts that possibly belong to it. Although several real-world phenomena are characterized by spatial vagueness, no approach in the literature addresses both spatial vagueness and the design of SDWs nor provides multidimensional analysis over vague spatial data. These shortcomings motivated the elaboration of this doctoral thesis, which addresses both vague spatial data warehouses (vague SDWs) and vague spatial online analytical processing (vague SOLAP). A vague SDW is a SDW that comprises vague spatial data, while vague SOLAP allows querying vague SDWs. The major contributions of this doctoral thesis are: (i) the Vague Spatial Cube (VSCube) conceptual model, which enables the creation of conceptual schemata for vague SDWs using data cubes; (ii) the Vague Spatial MultiDim (VSMultiDim) conceptual model, which enables the creation of conceptual schemata for vague SDWs using diagrams; (iii) guidelines for designing relational schemata and integrity constraints for vague SDWs, and for extending the SQL language to enable vague SOLAP; (iv) the Vague Spatial Bitmap Index (VSB-index), which improves the performance to process queries against vague SDWs. The applicability of these contributions is demonstrated in two applications of the agricultural domain, by creating conceptual schemata for vague SDWs, transforming these conceptual schemata into logical schemata for vague SDWs, and efficiently processing queries over vague SDWs.
4

Designing conventional, spatial, and temporal data warehouses: concepts and methodological framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. <p><p>A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. <p><p>DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. <p><p>Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems.<p><p>In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them.<p><p>On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. <p><p>However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. <p><p>With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. <p><p>Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. <p>Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. <p><p>In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. <p><p>Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. <p><p>In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process.<p><p>To ensure the correctness of the proposed conceptual models, i.e. with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.1097 seconds