Spelling suggestions: "subject:"speaker change"" "subject:"peaker change""
1 |
ROBUST SPEAKER DIARIZATION FOR MEETINGSAnguera Miró, Xavier 21 December 2006 (has links)
Aquesta tesi doctoral mostra la recerca feta en l'àrea de la diarització de locutor per a sales de reunions. En la present s'estudien els algorismes i la implementació d'un sistema en diferit de segmentació i aglomerat de locutor per a grabacions de reunions a on normalment es té accés a més d'un micròfon per al processat. El bloc més important de recerca s'ha fet durant una estada al International Computer Science Institute (ICSI, Berkeley, Caligornia) per un període de dos anys.La diarització de locutor s'ha estudiat força per al domini de grabacions de ràdio i televisió. La majoria dels sistemes proposats utilitzen algun tipus d'aglomerat jeràrquic de les dades en grups acústics a on de bon principi no se sap el número de locutors òptim ni tampoc la seva identitat. Un mètode molt comunment utilitzat s'anomena "bottom-up clustering" (aglomerat de baix-a-dalt), amb el qual inicialment es defineixen molts grups acústics de dades que es van ajuntant de manera iterativa fins a obtenir el nombre òptim de grups tot i acomplint un criteri de parada. Tots aquests sistemes es basen en l'anàlisi d'un canal d'entrada individual, el qual no permet la seva aplicació directa per a reunions. A més a més, molts d'aquests algorisms necessiten entrenar models o afinar els parameters del sistema usant dades externes, el qual dificulta l'aplicabilitat d'aquests sistemes per a dades diferents de les usades per a l'adaptació.La implementació proposada en aquesta tesi es dirigeix a solventar els problemes mencionats anteriorment. Aquesta pren com a punt de partida el sistema existent al ICSI de diarització de locutor basat en l'aglomerat de "baix-a-dalt". Primer es processen els canals de grabació disponibles per a obtindre un sol canal d'audio de qualitat major, a més dínformació sobre la posició dels locutors existents. Aleshores s'implementa un sistema de detecció de veu/silenci que no requereix de cap entrenament previ, i processa els segments de veu resultant amb una versió millorada del sistema mono-canal de diarització de locutor. Aquest sistema ha estat modificat per a l'ús de l'informació de posició dels locutors (quan es tingui) i s'han adaptat i creat nous algorismes per a que el sistema obtingui tanta informació com sigui possible directament del senyal acustic, fent-lo menys depenent de les dades de desenvolupament. El sistema resultant és flexible i es pot usar en qualsevol tipus de sala de reunions pel que fa al nombre de micròfons o la seva posició. El sistema, a més, no requereix en absolute dades d´entrenament, sent més senzill adaptar-lo a diferents tipus de dades o dominis d'aplicació. Finalment, fa un pas endavant en l'ús de parametres que siguin mes robusts als canvis en les dades acústiques. Dos versions del sistema es van presentar amb resultats excel.lents a les evaluacions de RT05s i RT06s del NIST en transcripció rica per a reunions, a on aquests es van avaluar amb dades de dos subdominis diferents (conferencies i reunions). A més a més, es fan experiments utilitzant totes les dades disponibles de les evaluacions RT per a demostrar la viabilitat dels algorisms proposats en aquesta tasca. / This thesis shows research performed into the topic of speaker diarization for meeting rooms. It looks into the algorithms and the implementation of an offline speaker segmentation and clustering system for a meeting recording where usually more than one microphone is available. The main research and system implementation has been done while visiting the International Computes Science Institute (ICSI, Berkeley, California) for a period of two years. Speaker diarization is a well studied topic on the domain of broadcast news recordings. Most of the proposed systems involve some sort of hierarchical clustering of the data into clusters, where the optimum number of speakers of their identities are unknown a priory. A very commonly used method is called bottom-up clustering, where multiple initial clusters are iteratively merged until the optimum number of clusters is reached, according to some stopping criterion. Such systems are based on a single channel input, not allowing a direct application for the meetings domain. Although some efforts have been done to adapt such systems to multichannel data, at the start of this thesis no effective implementation had been proposed. Furthermore, many of these speaker diarization algorithms involve some sort of models training or parameter tuning using external data, which impedes its usability with data different from what they have been adapted to.The implementation proposed in this thesis works towards solving the aforementioned problems. Taking the existing hierarchical bottom-up mono-channel speaker diarization system from ICSI, it first uses a flexible acoustic beamforming to extract speaker location information and obtain a single enhanced signal from all available microphones. It then implements a train-free speech/non-speech detection on such signal and processes the resulting speech segments with an improved version of the mono-channel speaker diarization system. Such system has been modified to use speaker location information (then available) and several algorithms have been adapted or created new to adapt the system behavior to each particular recording by obtaining information directly from the acoustics, making it less dependent on the development data.The resulting system is flexible to any meetings room layout regarding the number of microphones and their placement. It is train-free making it easy to adapt to different sorts of data and domains of application. Finally, it takes a step forward into the use of parameters that are more robust to changes in the acoustic data. Two versions of the system were submitted with excellent results in RT05s and RT06s NIST Rich Transcription evaluations for meetings, where data from two different subdomains (lectures and conferences) was evaluated. Also, experiments using the RT datasets from all meetings evaluations were used to test the different proposed algorithms proving their suitability to the task.
|
2 |
Pokalbio organizavimas ir struktūra (remiantis šiuolaikinės vokiečių vaikų ir jaunimo literatūros pavyzdžiais) / Organization and Structure of the Conversation (On the Basis of the Examples Taken from Contemporary German Children Literature)Kuprienė, Laima 01 June 2012 (has links)
Šio mokslinio darbo objektas yra vaikų ir jaunimo pokalbiai šiuolaikinėje vokiečių vaikų ir jaunimo literatūroje. Darbe nagrinėjami pokalbio sudarymo būdai, pokalbio struktūra ir struktūrą lemiantys veiksniai. Disertacijoje pokalbis apibrėžiamas kaip lingvistinis vienetas, aprašoma pokalbio struktūra ir jos vienetai. Vaikų pokalbiai analizuojami remiantis pokalbio maksimų teorija, stebimas taisyklių taikymas konstruojant pokalbį bei taisyklių pažeidimai. Tiriamosiose darbo dalyse aptariami pokalbio dalyvių vaidmenys ir jų keitimosi mechanizmai, pokalbio dalių raiškos variantai, verbalinės ir neverbalinės kalbos santykis pokalbyje. Be to, nagrinėjami fonetiniai, leksiniai, morfologiniai, sintaksiniai kalbėjimo vienetai, būdingi vaikų ir jaunimo kalbai, t.y. veikiantys vaikų pokalbio sudarymą, padedantys tiksliau nustatyti adresatą, tiksliau išreikšti mintis, apibūdinantys kalbėtojo statusą bei padedantys kuriant įvaizdį. / The object of the doctoral thesis is children's and youth conversations presented in contemporary German literature composed for children and youth. The author analyses the instruments of conversation construction, its structure and factors which determine it. Since the conversation is defined as a linguistic unit, the thesis discusses its structure and elements. Children's talks have been analysed on the basis of Grice's theory of conversational maxims, which allowed to observe the application of particular rules in conversation construction and their disregard or violations. The conversation analysis has also been developed from other perspectives, such as the roles of interlocutors and the mechanisms of their alteration, the expressive variations of the parts of conversations and the relationship between verbal and non-verbal language. Phonetic, lexical, morphological and syntactic discursive elements typical of the children's and youth language have been discussed as well, since they have a considerable impact on the formation of the children's conversation and help to determine the addressee more adequately, express the ideas more acurately, reveal the true status of the speaker and create the desired image.
|
3 |
Steps towards end-to-end neural speaker diarization / Étapes vers un système neuronal de bout en bout pour la tâche de segmentation et de regroupement en locuteursYin, Ruiqing 26 September 2019 (has links)
La tâche de segmentation et de regroupement en locuteurs (speaker diarization) consiste à identifier "qui parle quand" dans un flux audio sans connaissance a priori du nombre de locuteurs ou de leur temps de parole respectifs. Les systèmes de segmentation et de regroupement en locuteurs sont généralement construits en combinant quatre étapes principales. Premièrement, les régions ne contenant pas de parole telles que les silences, la musique et le bruit sont supprimées par la détection d'activité vocale (VAD). Ensuite, les régions de parole sont divisées en segments homogènes en locuteur par détection des changements de locuteurs, puis regroupées en fonction de l'identité du locuteur. Enfin, les frontières des tours de parole et leurs étiquettes sont affinées avec une étape de re-segmentation. Dans cette thèse, nous proposons d'aborder ces quatre étapes avec des approches fondées sur les réseaux de neurones. Nous formulons d’abord le problème de la segmentation initiale (détection de l’activité vocale et des changements entre locuteurs) et de la re-segmentation finale sous la forme d’un ensemble de problèmes d’étiquetage de séquence, puis nous les résolvons avec des réseaux neuronaux récurrents de type Bi-LSTM (Bidirectional Long Short-Term Memory). Au stade du regroupement des régions de parole, nous proposons d’utiliser l'algorithme de propagation d'affinité à partir de plongements neuronaux de ces tours de parole dans l'espace vectoriel des locuteurs. Des expériences sur un jeu de données télévisées montrent que le regroupement par propagation d'affinité est plus approprié que le regroupement hiérarchique agglomératif lorsqu'il est appliqué à des plongements neuronaux de locuteurs. La segmentation basée sur les réseaux récurrents et la propagation d'affinité sont également combinées et optimisées conjointement pour former une chaîne de regroupement en locuteurs. Comparé à un système dont les modules sont optimisés indépendamment, la nouvelle chaîne de traitements apporte une amélioration significative. De plus, nous proposons d’améliorer l'estimation de la matrice de similarité par des réseaux neuronaux récurrents, puis d’appliquer un partitionnement spectral à partir de cette matrice de similarité améliorée. Le système proposé atteint des performances à l'état de l'art sur la base de données de conversation téléphonique CALLHOME. Enfin, nous formulons le regroupement des tours de parole en mode séquentiel sous la forme d'une tâche supervisée d’étiquetage de séquence et abordons ce problème avec des réseaux récurrents empilés. Pour mieux comprendre le comportement du système, une analyse basée sur une architecture de codeur-décodeur est proposée. Sur des exemples synthétiques, nos systèmes apportent une amélioration significative par rapport aux méthodes de regroupement traditionnelles. / Speaker diarization is the task of determining "who speaks when" in an audio stream that usually contains an unknown amount of speech from an unknown number of speakers. Speaker diarization systems are usually built as the combination of four main stages. First, non-speech regions such as silence, music, and noise are removed by Voice Activity Detection (VAD). Next, speech regions are split into speaker-homogeneous segments by Speaker Change Detection (SCD), later grouped according to the identity of the speaker thanks to unsupervised clustering approaches. Finally, speech turn boundaries and labels are (optionally) refined with a re-segmentation stage. In this thesis, we propose to address these four stages with neural network approaches. We first formulate both the initial segmentation (voice activity detection and speaker change detection) and the final re-segmentation as a set of sequence labeling problems and then address them with Bidirectional Long Short-Term Memory (Bi-LSTM) networks. In the speech turn clustering stage, we propose to use affinity propagation on top of neural speaker embeddings. Experiments on a broadcast TV dataset show that affinity propagation clustering is more suitable than hierarchical agglomerative clustering when applied to neural speaker embeddings. The LSTM-based segmentation and affinity propagation clustering are also combined and jointly optimized to form a speaker diarization pipeline. Compared to the pipeline with independently optimized modules, the new pipeline brings a significant improvement. In addition, we propose to improve the similarity matrix by bidirectional LSTM and then apply spectral clustering on top of the improved similarity matrix. The proposed system achieves state-of-the-art performance in the CALLHOME telephone conversation dataset. Finally, we formulate sequential clustering as a supervised sequence labeling task and address it with stacked RNNs. To better understand its behavior, the analysis is based on a proposed encoder-decoder architecture. Our proposed systems bring a significant improvement compared with traditional clustering methods on toy examples.
|
Page generated in 0.065 seconds