• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 1
  • 1
  • Tagged with
  • 25
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spermatogonial stem cells show an age-dependent and age-independent difference in commitment to self-renewal and differentiation

Ebata, Kevin. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Experimental Medicine. Title from title page of PDF (viewed 2008/01/12). Includes bibliographical references.
12

Kryoprezervace a transplantace spermatogonií kapra obecného

FUČÍKOVÁ, Michaela January 2018 (has links)
Cryopreservation and transplantation of germ cells in fish provides a suitable tool for preserving genetic information. By method of surrogate reproduction, the offspring with characters of the chosen donor can be obtained. In this case of our commercially important species common carp. However, for the successful cryopreservation of the germ cells, a suitable protocol for each species must be established. Several cryoprotectants were tested. The best of them, Me2SO, regarding the viability of spermatogonia, was tested for its different concentrations depending also on the rate of freezing. Further testing, related to the effect of tissue size, incubation time and added sugar, was performed. The result of the assay identified best cryomedium composed of 2.5M dimethylsulfoxide, added sugar of 0.3M glucose, 1.5% BSA and 25nM Hepes dissolved in PBS. The most suitable size of tissue was 100 mg, incubation time was 30 min and coolig rate was -1 ° C/min. This protocol ensures the highest viability rate of cryopreserved spermatogonia of common carp. The second part of the work was to verify the success of the transplantation of cryopreserved and fresh spermatogonia into a suitably chosen recipient, the goldfish, which shares similar reproductive characteristics with carp, but also offers reduction of space requirements or resistance to koi-herpes virus. The transplanted germ cells colonized the germ line and started gametogenesis in 42.5% (cryopreserved spermatogonia) and 52.5% (fresh spermatogonia) goldfish recipients, which demonstrated that the transplantation of cryopreserved spermatogonia of common carp can be successfully achieved.
13

Characterization and Transplantation of Felid Spermatogonial Stem Cells

Powell, Robin H 15 May 2015 (has links)
Spermatogonial stem cells (SSC) self-renew and differentiate into spermatozoa throughout the life of the male. SSC transplantation is a potential method for the propagation of genetically important males. These cells have been isolated in different mammalian species using specific cell surface markers, but not in felines. The goal of this study was to explore a relevant strategy for conservation of endangered felids by characterizing domestic cat (Felis catus) SSCs and assessing their ability for self-renewal after transplantation. Firstly, SSC and pluripotent surface markers, identified in non-feline species, were tested for expression in mixed germ cells from adults by immunocytochemistry and flow cytometry, with immunohistochemical confirmation of expression in prepubertal and adult testis tissue. Secondly, subpopulations were purified through fluorescence-activated cell sorting using spermatogonia-specific markers and molecularly characterized to ascertain levels of pluripotent transcription factors expressed in cat embryos. Thirdly, subpopulations of mixed germ cells and purified spermatogonial cells were transplanted to prepubertal cats to determine: 1) if SSCs capable of colonization were present, and 2) the value of using adolescent domestic cats without depletion of endogenous germ cells as recipients. Fourthly, various culture conditions were evaluated to identify proteins and factors required to maintain proliferation of cat SSCs. Lastly, adult lion testis tissue was characterized with the same surface markers, and mixed germ cells were transplanted to cat testes to evaluate the cat as a suitable host for lion SSC colonization and differentiation. Pluripotent surface markers were more reliable than the common SSC surface markers for isolating cat SSCs. Varying expression levels of pluripotent transcription factors between the different purified cell populations identified spermatogonial subpopulations. Cell purification was not necessary to colonize recipient testes, and transplantation validated the use of prepubertal males as recipients without depletion of endogenous cells. Unlike spermatogonia within mixed germ cells, purified spermatogonia were not maintained under various culture conditions; therefore, SSC culture conditions must be optimized. Similarities in the expression patterns of surface markers in lion and cat spermatogonia were revealed, and colonization of lion SSCs in cat testes provided further evidence of the domestic cat’s relevance as a model for exotic felid SSC transplantation.
14

Caracterização, isolamento e cultura de espermatogônias primárias de curimbatá, Prochilodus lineatus (Valencienes, 1847). / Characterization, isolation and culture of primary spermatogonias of curimbatá, Prochilodus lineatus (Valencienes, 1847).

Dias, Gisele Cristiane de Melo 20 March 2015 (has links)
Machos adultos de P. lineatus tiveram suas gônadas processadas de acordo com as rotinas de microscopia de luz e microscopia eletrônica de transmissão. Para a cultura de células, os testículos foram digeridos enzimaticamente, a suspensão testicular foi separada por gradiente descontínuo com Percoll seguido pelo plaqueamento diferencial por adesão e as células foram cultivadas. Foi realizado o método de enriquecimento das espermatogônias por citometria de fluxo. Os testículos apresentam as regiões anterior, média e posterior com distribuição semelhante dos tipos de células, e o diâmetro nuclear das células germinativas diminui significativamente durante a espermatogênese. As espermatogônias cultivadas por 15 dias com meio para proliferação celular resultaram em grandes aglomerados celulares que foram caracterizados com o anti-Vasa, anti-GFRa1 e anti-OCT4. As culturas que receberam o meio para diferenciação celular mostraram processo de proliferação lento das espermatogônias primárias comparado com a cultura que teve o meio indicado para proliferação celular. / Adult males of P. lineatus had their gonads used according routines of light microscopy and transmission electron microscopy. For cell culture, the testes were enzymatically digested; testicular suspension was separated by discontinuous gradient with Percoll followed by adhesion differential plating and the cells were cultured. The enrichment of the spermatogonia was carried by flow cytometry. The testes present three regions with similar distribution of cell types, and nuclear diameter of germ cells decreases significantly during spermatogenesis. The spermatogonia cultured for 15 days with medium for cell proliferation, resulted in large cell agglomerates which were characterized with the antibodies anti-Vasa, anti-GFRa1 and anti-anti-OCT4. The cultures that receiving medium for cell differentiation showed slow proliferation process of primary spermatogonia compared to cell culture medium suggestive for cell differentiation.
15

Caracterização, isolamento e cultura de espermatogônias primárias de curimbatá, Prochilodus lineatus (Valencienes, 1847). / Characterization, isolation and culture of primary spermatogonias of curimbatá, Prochilodus lineatus (Valencienes, 1847).

Gisele Cristiane de Melo Dias 20 March 2015 (has links)
Machos adultos de P. lineatus tiveram suas gônadas processadas de acordo com as rotinas de microscopia de luz e microscopia eletrônica de transmissão. Para a cultura de células, os testículos foram digeridos enzimaticamente, a suspensão testicular foi separada por gradiente descontínuo com Percoll seguido pelo plaqueamento diferencial por adesão e as células foram cultivadas. Foi realizado o método de enriquecimento das espermatogônias por citometria de fluxo. Os testículos apresentam as regiões anterior, média e posterior com distribuição semelhante dos tipos de células, e o diâmetro nuclear das células germinativas diminui significativamente durante a espermatogênese. As espermatogônias cultivadas por 15 dias com meio para proliferação celular resultaram em grandes aglomerados celulares que foram caracterizados com o anti-Vasa, anti-GFRa1 e anti-OCT4. As culturas que receberam o meio para diferenciação celular mostraram processo de proliferação lento das espermatogônias primárias comparado com a cultura que teve o meio indicado para proliferação celular. / Adult males of P. lineatus had their gonads used according routines of light microscopy and transmission electron microscopy. For cell culture, the testes were enzymatically digested; testicular suspension was separated by discontinuous gradient with Percoll followed by adhesion differential plating and the cells were cultured. The enrichment of the spermatogonia was carried by flow cytometry. The testes present three regions with similar distribution of cell types, and nuclear diameter of germ cells decreases significantly during spermatogenesis. The spermatogonia cultured for 15 days with medium for cell proliferation, resulted in large cell agglomerates which were characterized with the antibodies anti-Vasa, anti-GFRa1 and anti-anti-OCT4. The cultures that receiving medium for cell differentiation showed slow proliferation process of primary spermatogonia compared to cell culture medium suggestive for cell differentiation.
16

Functional studies of STK31: a cell fate determinant in spermatogonia and cancer development. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Further studies of Stk31 in spermatogenesis in vivo would allow the identification of the asymmetry machinery of GSCs and the signaling mechanism underlying cell fate determination. Further studies of STK31 in cancer stem cells would allow the development of new diagnostic and therapeutic approaches. / In the first part of the experiment, the expression and cellular localization of STK31 were investigated. RT-PCR results showed that STK31 was reactivated in 47 -- 86% of multiple cancers. Immunofluorescent study and GFP tagging experiment showed that STK31 was localized in the cytoplasm and formed aggregated granules that divide asymmetrically during mitosis. Further study by co-staining with E-cadherin demonstrated that the mouse homolog, Stk31, was expressed in the transition state between undifferentiated and differentiated spermatogonia. These data suggest the possible involvement of STK31 in mouse spermatogonia and cancer development. / In the second part of the experiment, the function of Stk31 in mouse spermatogonia was investigated- A GSC culture on an STO feeder layer was established. Studies on growing properties, expression of molecular markers and germ cell transplantation showed that GSC culture maintained spermatogonial stem cell activity. Retinoic acid was then used to induce differentiation of GSC. The differentiation status was confirmed by monitoring the expression of molecular markers. RT-PCR and immunofluorescent study showed that the expression of Stk31 was induced in RA-induced differentiation and Stk31 proteins were asymmetrically distributed during GSC division. Overexpression of Stk31 in GSCs using retroviral transduction induced the differentiation phenotypes. These data indicate the involvement of Stk31 in mouse spermatogonia cell fate determination. / In the third part of the experiment, the function of STK31 in human colon cancer was investigated. A stable STK31 knock-down Caco2 cells were established by stably transfecting two miR RNAi designs with different efficiency into Caco2 cells. Flow cytometry analysis showed that knock-down of STK31 resulted in G1 phase arrest. Cell counts and MTS assays suggested that knock-down of STK31 decreased cell proliferation in confluent cultures. Knock-down of STK31 also enhanced cell attachment to several ECM proteins and decreases cell migration as suggested by attachment assays and migration assays. Moreover, knock-down of STK31 enhanced enterocytic differentiation and inhibited tumorigenicity both in vitro and in vivo as indicated by colony formation assays and xenograft assays. Date obtained from whole genome microarray studies indicate that STK31 regulates these "stemness" properties through altering the expression of key players in various pathways including KIT, SMAD1 and Cyclin D2. These results suggest the involvement of STK31 in colon cancer as a regulator of "sternness". / Spermatogenesis is a complicated process involving mitosis, meiosis and post-meiotic differentiation. Due to the lack of in vitro models, genes that are involved in mammalian spermatogenesis are largely unknown. Spermatogenesis and tumorigenesis share important biological similarities. This co-relation can be signified by a special group of genes called cancer/testis (CT) antigens, which are only expressed in the testes and cancer. Although cancer biology has been extensively studied for decades, promising therapeutic methods are not available for every type of cancer. Recent discovery of cancer stem cells and functional genomics studies have shed light on the development of new diagnostic and therapeutic approaches. This thesis describes the expression, cellular localization and function of a novel CT gene, STK31, in spermatogonia and cancer development. / Fok, Kin Lam Ellis. / "December 2009." / Adviser: H.C. Chan. / Source: Dissertation Abstracts International, Volume: 72-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 143-169). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
17

Identification of gonial stem cells and Leydig cells in transgenic medaka (Oryzias latipes) reporter strains

Khatun, Mst. Muslima 31 July 2013 (has links) (PDF)
The mechanism to maintain stem cell properties and to exit into differentiation pathways is a pivotal question in stem cell research. Spermatogonia are the adult stem cells of the male germ line, which are used in biomedical research as a source of undifferentiated cells. The communication between germ line stem cells and specialized somatic cells (Sertoli cells and Leydig cells) plays important roles in stem cell maintenance, germ cell proliferation, and differentiation. With regard to the biology of stem cells and spermatogenesis, the medaka (Oryzias latipes) is used as a teleost model organism, and it is also used to assess the effects of endocrine disruptors on reproductive phenomena. However, the lack of suitable molecular markers hampers the detection, isolation and analysis of different testis cells including gonial stem cells and Leydig cells. Therefore, oct4, sox2 and cyp11b were chosen to create transgenic reporter lines for the labeling of stem cells and Leydig cells, respectively. The present study had the aim to examine the temporal and spatial expression of the respective genes during embryonic development and in adult gonads of the medaka, and to describe the application of these transgenic lines in stem cell biology and reproductive biology. The mCherry expression in transgenic fish of the line FSI-Tg(sox2-mCherry)17 marks embryonic stem cells, Leydig cells and interstitial cells in adult testis. Faithful EGFP and DsRed expression in transgenic reporters strains for oct4 and cyp11b mimics the endogenous expression of oct4/pou2 and cyp11b-protein, respectively. The reporter gene expression in the strains FSI-Tg(oct4-EGFP)9 and FSI-Tg(oct4-EGFP)A allows the visualization of oct4 positive cells during embryonic development, PGCs, early germ cells and adult gonial cells. The Leydig cells express brightly green or red fluorescence in the medaka strains FSI-Tg(cyp11b-EGFP)20 and FSI-Tg(cyp11b-DsRed)1434, respectively, allowing the easy identification of Leydig cells in adult testis. The oct4-EGFP reporter labels medaka embryonic and spermatogonial stem cells, in which the spermatogonial stem cells at the ends of the testicular lobules show brightly green fluorescence. The transgenic expression in stem cells is also shown in the flow plot of primary testis cells. The spermatogonia are the largest cells and have the strongest fluorescence, which decreased upon differentiation. Therefore, the oct4-EGFP reporter strains will provide an opportunity to detect and to isolate the EGFP expressing cells for transplantation. These strains will also facilitate further experiments on the effects of drugs or hypoxia on these cells, because the strongest EGFP expressing cells can be easily detected in transgenic lines. Labeling of Leydig cells in cyp11b reporter lines opens a new area to study the seasonal variation of spermatogenesis. The medaka is a seasonal breeder in its natural habitat and the simulation of seasonal changes allows the simultaneous quantitative analysis of oct4-EGFP and cyp11b-DsRed expressing cells under such conditions.
18

Identification of gonial stem cells and Leydig cells in transgenic medaka (Oryzias latipes) reporter strains

Khatun, Mst. Muslima 15 July 2013 (has links)
The mechanism to maintain stem cell properties and to exit into differentiation pathways is a pivotal question in stem cell research. Spermatogonia are the adult stem cells of the male germ line, which are used in biomedical research as a source of undifferentiated cells. The communication between germ line stem cells and specialized somatic cells (Sertoli cells and Leydig cells) plays important roles in stem cell maintenance, germ cell proliferation, and differentiation. With regard to the biology of stem cells and spermatogenesis, the medaka (Oryzias latipes) is used as a teleost model organism, and it is also used to assess the effects of endocrine disruptors on reproductive phenomena. However, the lack of suitable molecular markers hampers the detection, isolation and analysis of different testis cells including gonial stem cells and Leydig cells. Therefore, oct4, sox2 and cyp11b were chosen to create transgenic reporter lines for the labeling of stem cells and Leydig cells, respectively. The present study had the aim to examine the temporal and spatial expression of the respective genes during embryonic development and in adult gonads of the medaka, and to describe the application of these transgenic lines in stem cell biology and reproductive biology. The mCherry expression in transgenic fish of the line FSI-Tg(sox2-mCherry)17 marks embryonic stem cells, Leydig cells and interstitial cells in adult testis. Faithful EGFP and DsRed expression in transgenic reporters strains for oct4 and cyp11b mimics the endogenous expression of oct4/pou2 and cyp11b-protein, respectively. The reporter gene expression in the strains FSI-Tg(oct4-EGFP)9 and FSI-Tg(oct4-EGFP)A allows the visualization of oct4 positive cells during embryonic development, PGCs, early germ cells and adult gonial cells. The Leydig cells express brightly green or red fluorescence in the medaka strains FSI-Tg(cyp11b-EGFP)20 and FSI-Tg(cyp11b-DsRed)1434, respectively, allowing the easy identification of Leydig cells in adult testis. The oct4-EGFP reporter labels medaka embryonic and spermatogonial stem cells, in which the spermatogonial stem cells at the ends of the testicular lobules show brightly green fluorescence. The transgenic expression in stem cells is also shown in the flow plot of primary testis cells. The spermatogonia are the largest cells and have the strongest fluorescence, which decreased upon differentiation. Therefore, the oct4-EGFP reporter strains will provide an opportunity to detect and to isolate the EGFP expressing cells for transplantation. These strains will also facilitate further experiments on the effects of drugs or hypoxia on these cells, because the strongest EGFP expressing cells can be easily detected in transgenic lines. Labeling of Leydig cells in cyp11b reporter lines opens a new area to study the seasonal variation of spermatogenesis. The medaka is a seasonal breeder in its natural habitat and the simulation of seasonal changes allows the simultaneous quantitative analysis of oct4-EGFP and cyp11b-DsRed expressing cells under such conditions.
19

Quantitative analysis of spermatogenesis and apoptosis in the common marmoset (Callithrix jacchus) reveals high spermatogonial turnover and spermatogenic efficiency.

Brinkworth, Martin H., Aslam, H., Krishnamurthy, H., Weinbauer, G.F., Einspanier, A. 06 July 2009 (has links)
Spermatogenesis is characterized by the succession in time and space of specific germ cell associations (stages). There can be a single stage (e.g., rodents and some macaques) or more than one stage (e.g., chimpanzee and human) per tubular cross section. We analyzed the organization of the seminiferous epithelium and quantified testicular germ cell production and apoptosis in a New World primate, the common marmoset (Callithrix jacchus). Tubule cross sections contained more than one stage, and the human six-stage system could be applied to marmoset spermatogenesis. Stereological (optical disector) analysis (n = 5) revealed high spermatogenic efficiency during meiosis and no loss of spermatids during spermiogenesis. The conversion of type A to type B spermatogonia was several-fold higher than that reported for other primates. Highest apoptotic rates were found for S-phase cells (20%) and 4C cells (15%) by flow cytometric analysis (n = 6 animals); histological analysis confirmed spermatogonial apoptosis. Haploid germ cell apoptosis was <2%. Marmoset spermatogenesis is very efficient and involves substantial spermatogonial proliferation. The prime determinants of germ cell production in primates appear to be proliferation and survival of spermatogonia rather than the efficiency of meiotic divisions. Based on the organizational similarities, common marmosets could provide a new animal model for experimental studies of human spermatogenesis.
20

Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka

Froschauer, Alexander, Kube, Lisa, Kegler, Alexandra, Rieger, Christiane, Gutzeit, Herwig O. 07 January 2016 (has links) (PDF)
Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level.

Page generated in 0.0427 seconds