• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema de Borsuk-Ulam para formas espaciais esféricas / Borsuk-Ulam theorem for spherical space forms

Santos, Marjory Del Vecchio dos 18 July 2014 (has links)
O objetivo principal deste trabalho é apresentar um estudo sobre o Teorema de Borsuk-Ulam para forma espacial esférica homotópica. Em nosso trabalho consideramos X uma n-forma espacial esférica homotópica a qual admite uma ação livre de Zp, com p> 2 primo e f : X → Rk uma função contínua e, mostramos que sob determinada relação entre os números n e k, o conjunto A(f) dos pontos de coincidência de f é não vazio / The main objective of this work is to present a study about the Borsuk- Ulam Theorem for homotopic spherical space. In our work we consider X be a n-dimensional homotopic spherical space form which admits a free action of Zp, with p> 2 prime and f : X → Rk be a continuous map and we show that, under certain relations between the numbers n and k, the set A(f) is not empty
2

Teorema de Borsuk-Ulam para formas espaciais esféricas / Borsuk-Ulam theorem for spherical space forms

Marjory Del Vecchio dos Santos 18 July 2014 (has links)
O objetivo principal deste trabalho é apresentar um estudo sobre o Teorema de Borsuk-Ulam para forma espacial esférica homotópica. Em nosso trabalho consideramos X uma n-forma espacial esférica homotópica a qual admite uma ação livre de Zp, com p> 2 primo e f : X → Rk uma função contínua e, mostramos que sob determinada relação entre os números n e k, o conjunto A(f) dos pontos de coincidência de f é não vazio / The main objective of this work is to present a study about the Borsuk- Ulam Theorem for homotopic spherical space. In our work we consider X be a n-dimensional homotopic spherical space form which admits a free action of Zp, with p> 2 prime and f : X → Rk be a continuous map and we show that, under certain relations between the numbers n and k, the set A(f) is not empty
3

Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space forms

Femina, Ligia Laís 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
4

THE EQUIVALENCE PROBLEM FOR ORTHOGONALLY SEPARABLE WEBS ON SPACES OF CONSTANT CURVATURE

Cochran, Caroline 09 June 2011 (has links)
This thesis is devoted to creating a systematic way of determining all inequivalent orthogonal coordinate systems which separate the Hamilton-Jacobi equation for a given natural Hamiltonian defined on three-dimensional spaces of constant, non-zero curvature. To achieve this, we represent the problem with Killing tensors and employ the recently developed invariant theory of Killing tensors. Killing tensors on the model spaces of spherical and hyperbolic space enjoy a remarkably simple form; even more striking is the fact that their parameter tensors admit the same symmetries as the Riemann curvature tensor, and thus can be considered algebraic curvature tensors. Using this property to obtain invariants and covariants of Killing tensors, together with the web symmetries of the associated orthogonal coordinate webs, we establish an equivalence criterion for each space. In the case of three-dimensional spherical space, we demonstrate the surprising result that these webs can be distinguished purely by the symmetries of the web. In the case of three-dimensional hyperbolic space, we use a combination of web symmetries, invariants and covariants to achieve an equivalence criterion. To completely solve the equivalence problem in each case, we develop a method for determining the moving frame map for an arbitrary Killing tensor of the space. This is achieved by defining an algebraic Ricci tensor. Solutions to equivalence problems of Killing tensors are particularly useful in the areas of multiseparability and superintegrability. This is evidenced by our analysis of symmetric potentials defined on three-dimensional spherical and hyperbolic space. Using the most general Killing tensor of a symmetry subspace, we derive the most general potential “compatible” with this Killing tensor. As a further example, we introduce the notion of a joint invariant in the vector space of Killing tensors and use them to characterize a well-known superintegrable potential in the plane. xiii
5

Grupos split metacíclicos e formas espaciais esféricas metacíclicas / Split metacyclic groups and split metacyclic spherical space forms

Ligia Laís Femina 02 December 2011 (has links)
Neste trabalho, estudamos a ação dos grupos split metacíclicos \'D IND. (2h+1) POT. 2 nas esferas. Encontramos uma região fundamental dos espaços quocientes, chamados de Formas Espaciais Esféricas Metacíclicas, que foi utilizada para construirmos um conveniente complexo de cadeias destas formas com o qual calculamos o anel de cohomologia e a torção de Reidemeister. Obtivemos também uma relação entre as diferentes torções encontradas / In this work, we study the action of the split metacyclic groups \'D IND. (2h+1) POT. 2 on the spheres. We find a fundamental domain of the quotient spaces, called Metacyclic Spherical Space Forms. Through this region we have built a convenient chain complex of these spaces and we used it to calculate their cohomology ring and Reidemeister torsion. We obtained also a relation between the different torsions found
6

Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais / Cellular decomposition and Reidemeister torsion for tetrahedral spherical space forms

Galves, Ana Paula Tremura 14 February 2013 (has links)
Dada uma ação isométrica livre do grupo binário tetraedral G sobre esferas de dimensão ímpar, obtemos uma decomposição celular finita explícita para as formas espaciais esféricas tetraedrais, fazendo uso do conceito de região (ou domínio) fundamental. A estrutura celular deixa explícita uma descrição do complexo de cadeias sobre o grupo G. Como aplicações, utilizamos o complexo de cadeias e a interpretação geométrica do produto cup para calcular o anel de cohomologia da forma espacial esférica tetraedral em dimensão três, e também calculamos a torção de Reidemeister destes espaços para uma determinada representação de G / Given a free isometric action of a binary tetrahedral group G on odd dimensional spheres, we obtain an explicit finite cellular decomposition of the tetrahedral spherical space forms, using the concept of fundamental domain. The cellular structure gives an explicit description of the associated cellular chain complex over the group G. As applications we use the chain complex and the geometric interpretation of the cup product to calculate the cohomology ring of the tetrahedral spherical space form in three dimension, and also compute the Reidemeister torsion of these spaces for a determined representation of G
7

Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais / Cellular decomposition and Reidemeister torsion for tetrahedral spherical space forms

Ana Paula Tremura Galves 14 February 2013 (has links)
Dada uma ação isométrica livre do grupo binário tetraedral G sobre esferas de dimensão ímpar, obtemos uma decomposição celular finita explícita para as formas espaciais esféricas tetraedrais, fazendo uso do conceito de região (ou domínio) fundamental. A estrutura celular deixa explícita uma descrição do complexo de cadeias sobre o grupo G. Como aplicações, utilizamos o complexo de cadeias e a interpretação geométrica do produto cup para calcular o anel de cohomologia da forma espacial esférica tetraedral em dimensão três, e também calculamos a torção de Reidemeister destes espaços para uma determinada representação de G / Given a free isometric action of a binary tetrahedral group G on odd dimensional spheres, we obtain an explicit finite cellular decomposition of the tetrahedral spherical space forms, using the concept of fundamental domain. The cellular structure gives an explicit description of the associated cellular chain complex over the group G. As applications we use the chain complex and the geometric interpretation of the cup product to calculate the cohomology ring of the tetrahedral spherical space form in three dimension, and also compute the Reidemeister torsion of these spaces for a determined representation of G

Page generated in 0.0657 seconds