• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 51
  • 18
  • 14
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 285
  • 75
  • 58
  • 46
  • 46
  • 44
  • 38
  • 30
  • 30
  • 29
  • 28
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Functions of Gamma-tubulin in the Spindle Assembly Checkpoint and APC/C Regulation in <i>Aspergillus nidulans</i>

Edgerton, Heather Dawn 17 October 2013 (has links)
No description available.
92

Hierarchical regulation of spindle size during early development

Rieckhoff, Elisa Maria 24 February 2021 (has links)
During embryogenesis, a single cell gives rise to a multi-cellular embryo through successive rounds of cell division. As cells become smaller, cellular organelles adapt their sizes accordingly. The size of the mitotic spindle—the microtubule-based structure controlling these divisions—is particularly important as it determines the distance over which chromosomes are segregated. To perform its function properly, spindle size scales with cell size. However, we still lack a mechanistic understanding of the underlying microtubule-based processes that regulate spindle scaling. In this thesis, I combined quantitative microscopy and laser ablation in zebrafish embryos and Xenopus laevis egg extract encapsulated in oil droplets. My measurements revealed the influence of microtubule length dynamics, transport, and nucleation on cell size-dependent spindle scaling. Strikingly, I discovered a hierarchical regulation of spindle size. In large cells, microtubule nucleation exclusively scales spindle size relative to cell size by changing the number of microtubules within the spindle. In small cells, microtubule dynamics fine-tune spindle size by modulating microtubule length. To understand the mechanism of spindle scaling, I proposed a theoretical model based on a limiting number of microtubule nucleators and microtubule-associated proteins that regulate microtubule length. The transition from nucleation- to dynamics-based scaling requires that microtubule number and the number of microtubule-associated proteins that promote microtubule growth scale differently with cell size. This can be achieved by sequestering an inhibitor of microtubule nucleation to the cell membrane, which is consistent with my measurements of microtubule nucleation. The differential regimes of spindle scaling modulated by microtubule nucleation and dynamics imply a gradual change in spindle architecture, which may ensure faithful chromosome segregation by spindles of all sizes.
93

Cdc55 controls the balance of phosphatases to coordinate spindle assembly and chromosome disjunction during budding yeast meiosis

Bizzari, Farid Fouad Mahmoud January 2012 (has links)
Meiosis is the process by which haploid gametes are produced from a diploid cell. It is a specialised form of cell division which involves one round of DNA replication followed by two rounds of chromosome segregation. Errors in the segregation process can give rise to aneuploidy, which can result in miscarriages and birth defects. In the first meiotic division homologous chromosomes are segregated, and sister chromatids are segregated in the second division. This is coordinated with two rounds of spindle microtubule assembly and disassembly. How these two processes are coordinated is unknown. In my PhD, I study the role of the protein phosphatase 2A (PP2A) regulatory subunit, Cdc55, in budding yeast meiosis. PP2A is a conserved heterotrimeric enzyme that has important roles in mitosis and meiosis. These roles are dictated by binding to either of its two regulatory subunits, Rts1 and Cdc55, in budding yeast . I show that Cdc55 is required for the proper assembly of a meiotic spindle in meiosis I, through the maintenance of the Cdc14 phosphatase in the nucleolus early in meiosis. In addition, Cdc55 is also required to limit the formation of PP2A complexes with the Rts1 regulatory subunit, and this is essential for the timely dissolution of sister chromatid cohesion. Thus, Cdc55 couples spindle assembly with chromosome segregation through its interactions with Cdc14 and PP2ARts1. Finally, I show some preliminary studies looking at the possible downstream effectors of Cdc14 that are important in this mechanism.
94

The Role of Spindle Orientation in Epidermal Development and Homeostasis

Seldin, Lindsey January 2015 (has links)
<p>Robust regulation of spindle orientation is essential for driving asymmetric cell divisions (ACDs), which generate cellular diversity within a tissue. During the development of the multilayered mammalian epidermis, mitotic spindle orientation in the proliferative basal cells is crucial not only for dictating daughter cell fate but also for initiating stratification of the entire tissue. A conserved protein complex, including LGN, Nuclear mitotic apparatus (NuMA) and dynein/dynactin, plays a key role in establishing proper spindle orientation during ACDs. Two of these proteins, NuMA and dynein, interact directly with astral microtubules (MTs) that emanate from the mitotic spindle. While the contribution of these MT-binding interactions to spindle orientation remains unclear, these implicate apical NuMA and dynein as strong candidates for the machinery required to transduce pulling forces onto the spindle to drive perpendicular spindle orientation. </p><p> In my work, I first investigated the requirements for the cortical recruitment of NuMA and dynein, which had never been thoroughly addressed. I revealed that NuMA is required to recruit the dynein/dynactin complex to the cell cortex of cultured epidermal cells. In addition, I found that interaction with LGN is necessary but not sufficient for cortical NuMA recruitment. This led me to examine the role of additional NuMA-interacting proteins in spindle orientation. Notably, I identified a role for the 4.1 protein family in stabilizing NuMA's association with the cell cortex using a FRAP (fluorescence recovery after photobleaching)-based approach. I also showed that NuMA's spindle orientation activity is perturbed in the absence of 4.1 interactions. This effect was demonstrated in culture using both a cortical NuMA/spindle alignment assay as well as a cell stretch assay. Interestingly, I also noted a significant increase in cortical NuMA localization as cells enter anaphase. I found that inhibition of Cdk1 or mutation of a single residue on NuMA mimics this effect. I also revealed that this anaphase localization is independent of LGN and 4.1 interactions, thus revealing two independent mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. </p><p> After gaining a deeper understanding of how NuMA is recruited and stabilized at the cell cortex, I then sought to investigate how cortical NuMA functions during spindle orientation. NuMA contains binding domains in its N- and C-termini that facilitate its interactions with the molecular motor dynein and MTs, respectively. In addition to its known role in recruiting dynein, I was interested in determining whether NuMA's ability to interact directly with MTs was critical for its function in spindle orientation. Surprisingly, I revealed that direct interactions between NuMA and MTs are required for spindle orientation in cultured keratinocytes. I also discovered that NuMA can specifically interact with MT ends and remain attached to depolymerizing MTs. To test the role of NuMA/MT interactions in vivo, I generated mice with an epidermal-specific in-frame deletion of the NuMA MT-binding domain. I determined that this deletion causes randomization of spindle orientation in vivo, resulting in defective epidermal differentiation and barrier formation, as well as neonatal lethality. In addition, conditional deletion of the NuMA MT-binding domain in adult mice results in severe hair growth defects. I found that NuMA is required for proper spindle positioning in hair follicle matrix cells and that differentiation of matrix-derived progeny is disrupted when NuMA is mutated, thus revealing an essential role for spindle orientation in hair morphogenesis. Finally, I discovered hyperproliferative regions in the interfollicular epidermis of these adult mutant mice, which is consistent with a loss of ACDs and perturbed differentiation. Based on these data, I propose a novel mechanism for force generation during spindle positioning whereby cortically-tethered NuMA plays a critical dynein-independent role in coupling MT depolymerization energy with cortical tethering to promote robust spindle orientation accuracy. </p><p> Taken together, my work highlights the complexity of NuMA localization and demonstrates the importance of NuMA cortical stability for productive force generation during spindle orientation. In addition, my findings validate the direct role of NuMA in spindle positioning and reveal that spindle orientation is used reiteratively in multiple distinct cell populations during epidermal morphogenesis and homeostasis.</p> / Dissertation
95

TRAF Regulation of Caspase-2-Dependent Apoptosis in Response to DNA Damage

Robeson, Alexander January 2016 (has links)
<p>The DNA of a cell operates as its blueprint, providing coded information for the production of the RNA and proteins that allow the cell to function. Cells can face a myriad of insults to their genomic integrity during their lifetimes, from simple errors during growth and division to reactive oxygen species to chemotherapeutic reagents. To deal with these mutagenic insults and avoid passing them on to progeny, cells are equipped with multiple defenses. Checkpoints can sense problems and halt a cell’s progression through the cell cycle in order to allow repairs. More drastically, cells can also prevent passing on mutations to progeny by triggering apoptosis, or programmed cell death. This work will present two separate discoveries regarding the regulation of DNA damage-induced apoptosis and the regulation of the spindle checkpoint.</p><p> The protease caspase-2 has previously been shown to be an important regulator of DNA damage-induced apoptosis. In unstressed cells caspase-2 is present as an inactive monomer, but upon sensing a stress caspase-2 dimerizes and becomes catalytically active. The mechanisms that regulate this dimerization are poorly understood. The first research chapter details our development of a novel method to study dimerized caspase-2, which in turn identified TRAF2 as a direct activator of caspase-2. Specifically, we utilized the Bimolecular Fluorescence Complementation technique, wherein complementary halves of the Venus fluorophore are fused to caspase-2: when caspase-2 dimerizes, the non-fluorescent halves fold into a functional Venus fluorophore. We combined this technique with a Venus-specific immunoprecipitation that allowed the purification of caspase-2 dimers. Characterization of the caspase-2 dimer interactome by MS/MS identified several members of the TNF Receptor Associated Factor (TRAF) family, specifically TRAF1, 2, and 3. Knockdown studies revealed that TRAF2 plays a primary role in promoting caspase-2 dimerization and downstream apoptosis in response to DNA damage. Identification of a TRAF Interacting Motif (TIM) on caspase-2 indicates that TRAF2 directly acts on caspase-2 to induce its activation. TRAF2 is known to act as an E3 ubiquitin ligase as well as a scaffold for other E3 ubiquitin ligases. Indeed, we identified three lysine residues in the caspase-2 prodomain (K15, K152, and K153) important for its ubiquitination and complex formation. Together these results revealed a novel role for TRAF2 as a direct activator of caspase-2 apoptosis triggered by DNA damage.</p><p> During mitosis, when the cell prepares to divide, great care is taken to ensure that the chromosomes are properly segregated between the two daughter cells by the mitotic spindle. This is primarily accomplished through the spindle checkpoint, which becomes activated when the mitotic spindle is not properly attached to each chromosome’s kinetochore. When activated, the primary effector of the spindle checkpoint, the mitotic checkpoint complex (MCC), inhibits the anaphase-promoting complex (APC/C) by binding to the APC/C co-activator, CDC20. This prevents the APC/C from targeting critical pro-mitotic proteins, like cyclin B and securin, to promote mitotic exit. Although the function of the MCC is well understood, its regulation is not, especially in regard to protein phosphatases To investigate this, we activated the spindle checkpoint with microtubule inhibitors and then treated with a variety of phosphatase inhibitors, examining the effect on the MCC and APC/C. We found that two separate inhibitors, calyculin A and okadaic acid (1uM), were able to promote the dissociation of the MCC. This led to the activation of the APC/C, but the cells remained in mitosis as evidenced by high levels of Cdk1 activity and chromosome condensation. This is the first time that phosphatases have been shown to be essential to maintaining the MCC and an active spindle checkpoint.</p> / Dissertation
96

Identifying new shared substrates of Aurora kinases at the mitotic apparatus

Deretic, Jovana January 2018 (has links)
Aurora A and B are the major kinases that control key events in mitosis, such as centrosome function, spindle assembly, chromosome segregation and cytokinesis, through phosphorylation of multiple proteins. These kinases share identical consensus target motifs, so the substrate specificity is determined by distinctive sub-cellular localization of the Auroras. Many proteins have been identified as targets of either Aurora A, or Aurora B, or both kinases by mass spectrometry studies. However, only a few of the identified phosphorylation sites in these targets have a characterized function in vivo. Therefore, the molecular mechanisms underlying the regulation of certain mitotic events by Aurora kinases remain unclear. The objective of my work was to develop a tool for identifying new substrates of both Aurora kinases. More specifically, I aimed to identify the molecular targets of Aurora A at the kinetochores, and determine how Aurora A contributes to the error correction near spindle poles. I first demonstrated that the outer kinetochore protein HEC1/Ndc80, phosphorylated by Aurora B at kinetochores, can also be phosphorylated by Aurora A close to the centrosomes (Chapter 2). My finding showed that Aurora kinases can share substrates in the cells and revealed the mechanism by which Aurora A contributes to the error-correction near spindle poles. To identify and characterise novel substrates of Aurora kinases, I developed a bioinformatic approach in collaboration with the Centre Bioinformatician, Alastair Kerr. This bioinformatic method uses the Auroras’ shared consensus motifs combined with several parameters that control the substrate specificity of Aurora kinases. I tested the phosphorylation of the chosen candidates in vitro using radiolabelled kinase assays. In my study, five proteins were validated - SPICE1, TTLL4, AHCTF1, CLASP2 and an uncharacterized protein KIAA1468 - as in vitro substrates of Aurora A and Aurora B kinases (Chapter 3). I then focussed on the Aurora kinases-dependent regulation of spindle and centriole-associated protein, SPICE1, in cells (Chapter 4). Using either site-directed mutagenesis of SPICE1 or inhibition of Aurora kinases with small molecule inhibitors, I found that the predicted phosphorylation of the SPICE1 C terminus had the function in cells of directing the SPICE1 localization on the spindle MTs. My results demonstrate the high accuracy of this genome-wide bioinformatics approach. By complementing mass spectrometry studies, here lies a potential for the identification of other unknown substrates, which is important for the general understanding of how Aurora kinases regulate the mitotic apparatus.
97

Analysis of Mph1 kinase and its substrates in spindle checkpoint signalling

Zich, Judith January 2010 (has links)
Accurate chromosome segregation is crucial as mis-segregation results in aneuploidy, which can lead to severe diseases such as cancer. The spindle checkpoint monitors sister-chromatid attachment and inhibits the onset of anaphase until all chromosomes are correctly bi-oriented on the mitotic spindle. The spindle checkpoint machinery of S.pombe is composed of many proteins, one of which is the kinase Mph1 (Mps1p-like pombe homolog). It previously has been shown that Mph1 is essential for the spindle checkpoint but not whether this is due to its kinase activity. In this study we determined the role of Mph1 kinase activity in the spindle checkpoint. To do so a kinase-dead version of Mph1, which had no detectable kinase activity, was analysed. Using this kinase-dead allele we showed that lack of Mph1 kinase activity abolished the spindle checkpoint and led to chromosome missegregation. As a result of these two defects cell viability of cells lacking Mph1 kinase activity was severely impaired. These results led to the question of how Mph1 kinase activity regulates the spindle checkpoint. Spindle checkpoint signalling is thought to mainly take place at two sites, at the kinetochore and at the anaphase promoting complex (APC). The APC is an E3 ubiquitin ligase that drives cells into anaphase by targeting the separase inhibitor securin and cyclin B for degradation by the 26 S proteasome. Upon activation of the spindle checkpoint the APC is inhibited by the mitotic checkpoint complex (MCC) composed of Slp1, Mad2 and Mad3. In this study we wanted to test whether the regulatory role of Mph1 kinase in the spindle checkpoint is via MCC binding to the APC. Using the kinase-dead version of Mph1 we showed that Mad2 and Mad3 binding to the APC is severely impaired in the absence of Mph1 kinase activity. This result led to the hypothesis that Mph1 might regulate Mad2 and Mad3 binding Using kinase assays Mad2 and Mad3 were identified as in vitro substrates of Mph1 and phosphorylation sites in Mad2 and Mad3 were determined by mass spectrometry. Phosphorylation mutants of Mad2 and Mad3 showed spindle checkpoint defects, indicating that they are important Mph1 substrates.
98

Conceção e instalação de um controlador de um spindle para integração em célula robótica

Castro, Fábio André Fonseca de January 2012 (has links)
Tese de mestrado integrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2012
99

Temporal Coordination Of Mitotic Chromosome Alignment And Segregation: Structural And Functional Studies Of Kif18a

Kim, Haein 01 January 2018 (has links)
Chromosome alignment is highly conserved in all eukaryotic cell divisions. Microtubule (MT) -based forces generated by the mitotic spindle are integral for proper chromosome alignment and equal chromosome segregation. The kinetochore is a multi-subunit protein complex that assembles on centromeric regions of chromosomes. Kinetochores tether chromosomes to MTs (K fibers) that emanate from opposite poles, in a process called biorientation. This linkage translates K fiber dynamics into chromosome movements during alignment and segregation. Stable, high-affinity kinetochore attachments promote spindle assembly checkpoint (SAC) silencing, which is active when unattached kinetochores are present. During chromosome alignment, 1) K fiber plus-end dynamics decrease, confining chromosome movements near the spindle equator, and 2) electrostatic interactions between kinetochore proteins and MTs increase. Chromosome segregation occurs as soon as all chromosomes are stably attached to microtubules and the SAC has been silenced. SAC silencing and chromosome alignment are temporally coordinated during normal divisions, implying that the mechanisms regulating K fiber dynamics and kinetochore affinity must be linked. Interestingly, HeLa cells depleted of a kinesin-8 motor Kif18A, known for its role in promoting chromosome alignment, display a SAC-dependent mitotic delay due to kinetochore-MT attachment defects. This is puzzling, as Kif18A's function in chromosome alignment is to suppress MT growth by stably associating with MT plus-ends. Whether Kif18A is required for attachment in all cells and how it promotes kinetochore microtubule linkages are not understood. The work presented in this dissertation supports a model in which Kif18A functions as a molecular link that coordinates chromosome alignment and anaphase onset. We find that Kif18A is required to stabilize kinetochore-MT attachments during mammalian germline development, as germline precursor cells in Kif18A mutant mice are unable to divide during embryogenesis due to an active SAC. However, while all cell types require functional Kif18A for chromosome alignment, mouse primary somatic cells can still divide with normal timing. This finding indicates a cell-type specific dependence on Kif18A for stabilizing kinetochore-MT attachments, and provides evidence that this function might be separate from Kif18A's known role in chromosome alignment. Consistent with this idea, we find that an evolutionarily conserved binding motif for protein phosphatase 1 (PP1) is required for Kif18A's novel role in regulating kinetochore microtubule attachments. Kif18A-PP1 interaction is required for Kif18A-mediated dephosphorylation of the kinetochore protein Hec1, which enhances attachment. However, Kif18A's interaction with PP1 is dispensable for chromosome alignment. Thus, point mutations that disrupt PP1 binding separate Kif18A's role in stabilizing kinetochore attachments from its function in promoting chromosome alignment. Additionally, through structure function studies of the motor domain, we identified a long surface loop (Loop2) that is required for Kif18A's unique MT plus-end binding activity, which is essential for its function in confining chromosome movements. Taken together, we find that Kif18A is molecularly tuned to provide temporal control of chromosome alignment and anaphase entry.
100

Modeling and control of mechanical impact on the spindles of hot steel rolling mill

Zhang, Kun January 2002 (has links)
Spindle failure during fast steel rolling is one of the major equipment failures encountered at Onesteel Whyalla Steelworks (WS). Spindle failure whilst infrequent has been occurring over a long period of time and is a significant cost impost in terms of replacement parts, repair and lost production. Previous attempts at mechanical analysis and spindle redesign have not rectified the problem. This thesis presents an in-depth investigation of the problem and uses a completely new approach, modeling and control, to obtain a solution to the problem.

Page generated in 0.0268 seconds