• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 51
  • 18
  • 14
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 285
  • 75
  • 58
  • 46
  • 46
  • 44
  • 38
  • 30
  • 30
  • 29
  • 28
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Through spindle cooling : a study of the feasibility of split tool titanium machining

Prins, Cilliers 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Efficient face milling of titanium alloys provides a global challenge. Difficult-to-cut super alloys such as Ti-6Al-4V is considered the “workhorse” material for aerospace components. During the machining of aerospace components, 80% – 90% of the material is removed. This requirement drives the innovation for machines and tooling to become more efficient, while driving down costs. In South Africa, this requirement is no different. Due to the historic practice of exporting valuable minerals such as Ilmenite, leucoxene and rutile, South Africa does not enjoy many of financial benefits of producing value added titanium alloy products. The Titanium Centre of Competence (TiCoC) is aimed at creating a South African titanium manufacturing industry by the year 2020. More specifically, the roughing of Ti-6Al-4V aerospace components has been identified as an area for improvement. The thermal conductivity of Ti-6Al-4V is significantly lower than that of other “workhorse” metals such as steel or aluminium. Therefore, heat rapidly builds up in the tool tip during high speed machining resulting in shortened tool life and increased machining costs. Hence the ongoing developments in the field of cooling methods for high speed machining. The latest development in high pressure cooling (HPC) is split tools that deliver coolant into the cutting interface via flat nozzles in the rake face of the insert. Although it has been released recently and limited to a single supplier, this cooling method is commercially available, yet little is known about its performance or application conditions. The operational characteristics of split tools are studied by answering set research questions. A dynamometer was used to measure the tangential cutting forces during 11 cutting experiments that follow a three-factor factorial design at two levels and with three centre points. A second-order model for predicting the tangential cutting force during face milling of Ti-6Al-4V with split tools was fit to the data at 95% confidence level. A predictive cutting force model was developed in terms of the cutting parameters: (1) Axial depth of cut (ADOC), (2) feed per tooth and, (3) cutting speed. The effect of cutting parameters on cutting force including their interactions are investigated. Data for chip evacuation, surface finish and tool wear are examined and discussed. Practical work was done at a selected industry partner to determine: (1) impact of an analytical approach to perform process development for aerospace component roughing, (2) determine the feasibility of implementing split tools to an existing process. A substantial time saving in the roughing time of the selected aerospace component was achieved through analytical improvement methods. Furthermore it was found that the split tools were not a suitable replacement for current tooling. It was established that certain critical operational requirements of the split tools are not met by the existing milling machine at the industry partner. / AFRIKAANSE OPSOMMING: Doeltreffende masjinering van titaan allooie bied `n wêreldwye uitdaging. Moeilik-om-te-sny super allooie soos Ti-6Al-4V word as die “werksesel” materiaal vir lugvaart komponente beskou. Gedurende die masjinering van lugvaart komponente word 80% - 90% van die materiaal verwyder. Dit is hiérdie behoefte wat die innovering van masjien -en snygereedskap dryf om dit meer doeltreffend en finansieël vatbaar te maak. Die Suid Arikaanse behoefte vir doeltreffende snygereedskap vir Ti-6Al-4V masjinering stem ooreen met hierdie internationale behoefte. Die geskiedkundige Suid Afrikaanse praktyk om onverwerkte, waardevolle minerale soos Ilmeniet, rutiel en leucoxene uit te voer, kniehalter die land se kans om winste uit verwerkte titaan allooi produkte te geniet. Die “Titanium Centre of Competence” (TiCoC) se mikpunt is om `n Suid Afrikaanse titaanproduk vervaardigingsmark op die been te bring teen 2020. Stellenbosch Universiteit se funksie, binne hierdie strategiese raamwerk, fokus op hoë spoed masjinering van Ti-6Al-4V lugvaart komponente. Die hitte geleidingsvermoë van Ti-6Al-4V is noemenswaardig laer as die van ander “werksesel” materiale soos byvoorbeeld staal of alumium. Om hierdie rede word hitte in die freesbeitelpunt gedurende hoë spoed masjinering opgeberg. Dit verkort gereedskap leeftyd en verhoog masjinerings kostes. Daarvandaan deurlopende ontwikkelinge in verkoelingsmetodes vir hoë spoed masjinering. Die mees onlangse ontwikkeling in hoë druk verkoeling is “split tools” wat koelmiddel na die snyoppervlak deur middel van langwerpige gleufies in die hark gesig van die beitelpunt lewer. Hierdie tegnologie is op die mark beskikbaar, maar slegs deur `n enkele verskaffer. Daar is ook geen akademiese publikasies wat oor Ti-6Al-4V masjinering met “split tools” handel nie. Die verrigtings vermoë en toepassings gebied vir die gereedskap is steeds onbekend. 'n Dinamometer is gebruik om die tangensiale snykragte tydens 11 sny eksperimente te meet. Die eksperiment ontwerp is faktoriaal van aard en bevat drie faktore en drie middelpunte oor twee vlakke. `n Kwadratiese model is geskik om die data op 95% vertroue vlak voor te stel en voorspellings mee te maak. Die voorspellingsmodel is ontwikkel in terme van: (1) Diepte van snit, (2) voertempo, en (3) Snyspoed. Die invloed van die drie parameters op die tangentiale snykrag, asook invloed met mekaar word ondersoek. Verdere data in verband met materiaal verwydering, oppervlak afwerking en beitel slytasie word ook bespreek. Praktiese werk is met behulp van `n bedryfsvennoot gedoen om vas te stel: (1) die impak van 'n analitiese benadering en ontwikkelings proses op die uitrof van lugvaart komponente, (2) en om die lewensvatbaarheid van implementering van “split tools“ aan 'n bestaande proses te bepaal. `n Noemenswaardige besparing is sodoende behaal. Dit is verder bevind dat “split tools” nie `n geskikte plaasvervanger vir die huidige snygereedskap is nie. Die rede daarvoor is gedeeltelik omdat die huidige freesmasjien by die bedryfsvennoot nie aan die kritiese operasionele vereistes van die gereedskap vervaardiger voldoen nie.
122

Relating cell shape, mechanical stress and cell division in epithelial tissues

Nestor-Bergmann, Alexander January 2018 (has links)
The development and maintenance of tissues and organs depend on the careful regulation and coordinated motion of large numbers of cells. There is substantial evidence that many complex tissue functions, such as cell division, collective cell migration and gene expression, are directly regulated by mechanical forces. However, relatively little is known about how mechanical stress is distributed within a tissue and how this may guide biochemical signalling. Working in the framework of a popular vertex-based model, we derive expressions for stress tensors at the cell and tissue level to build analytic relationships between cell shape and mechanical stress. The discrete vertex model is upscaled, providing exact expressions for the bulk and shear moduli of disordered cellular networks, which bridges the gap to traditional continuum-level descriptions of tissues. Combining this theoretical work with new experimental techniques for whole-tissue stretching of Xenopus laevis tissue, we separate the roles of mechanical stress and cell shape in orienting and cueing epithelial mitosis. We find that the orientation of division is best predicted by the shape of tricellular junctions, while there appears to be a more direct role for mechanical stress as a mitotic cue.
123

Studium exprese cílových mRNA při pospiviroidní patogenezi v systému "leaf factory" / Expression of target mRNAs during Popsipviroid pathogenesis in the "leaf factory" system

SELINGER, Martin January 2013 (has links)
The aim of this work was to identify potential mRNA targets of PTGS triggered by viroid-derived small RNAs (vsRNAs) in PSTVd-infected tomato plants (S. lycopersicum L.). We selected 47 possible gene targets using data provided by Prof. Dr. Steger (Heinrich Heine Universität, Düsseldorf, Germany) - the list of 1633 possible target mRNAs from tomato based on vsRNA:mRNA duplex prediction. The vsRNA sequences were obtained by Illumina sequencing of small RNA libraries from healthy and PSTVd-infected tomato plants. By qRT-PCR analysis we identified 6 genes with significantly altered levels of mRNA in PSTVd-infected tomato plants: CUL1 (protein ubiquitination), ERF4 (transcription factor of abiotic stress signalling pathway), H/ACA1 (rRNA pseudouridylation), NPH3 (transcription factor of fototropic signalling pathway), Sl-MYB (transcription factor regulating leaf development) and TCP3 (transcription factor regulating leaf development). The binary vector pLV07 with inserted expression cassette containing coding sequence of Sl-MYB was prepared for experiments in ?leaf factory? system in N. benthamiana plants. Expression analyses in ?leaf factory? system after 1,5 DPI using qRT-PCR and RNA blots revealed strong inhibition of expression of Sl-MYB in leaf sectors infiltrated with severe PSTVd AS1 strain, while mild PSTVd QFA strain showed minimal change in expression comparing to control sectors. Moreover, the overexpression of Sl-MYB in leaf sectors resulted in development of necroses after 2,5-3 DPI, in presence of silencing suppressor p19 after 2 DPI. The development of necroses was largely inhibited in PSTVd AS1-infiltrated leaf sectors in comparison with PSTVd QFA- and control-infiltrated sectors.
124

Determining the role of androgen receptor and glucocorticoid receptor in the rodent adrenal cortex through conditional gene targeting

Gannon, Anne-Louise January 2018 (has links)
Androgens are well documented as important regulators of male health, primarily in the maintenance and development of male sexual characteristics. However, a decline in circulating androgens has also been associated with co-morbidities such as obesity, cardiac disease and metabolic syndrome. Previous research has focussed upon the body wide impact of adrenal androgens, however whilst androgen receptor (AR) is abundantly expressed in the adrenal cortex of both rodents and humans, surprisingly little is known about androgen action on the adrenal cortex itself. This gap in our understanding is at least in part due to the perceived lack of suitable animal models. Rodents have largely been overlooked as a model system as their adrenals are unable to produce androgens due to lack of 17α Hydroxylase and 17, 20 lyse activity and they therefore do not have a zona reticularis. However, historical studies using castrated mice showed that removal of androgens leads to the redevelopment of an additional cortex zone known as the transient X-zone. The foetal adrenal is thought to give rise the adult adrenal cortex in human and rodents. These foetal cells are maintained for a period postnatally and regress differently depending on species and sex. In the human this zone is known as the ‘foetal zone’, and the rodent homologue termed the ‘X-zone’. The mechanisms underpinning the regression of the X-zone and its purpose and maintenance postnatally still aren’t clearly understood. To provide a comprehensive overview of androgen signalling in the adrenal cortex, multiple mouse models were utilised. First, Cre/loxP technology was used to ablate AR specifically from the adrenal cortex. Further androgen manipulation was achieved through castration (removal of androgens) and human chorionic gonadotropin (hCG) treatment (increased androgens). The initial study investigates the impacts on the male mouse adrenal. Histology analysis revealed the presence of an X-zone in all experimental cohorts following loss of AR or circulating androgens, confirmed by 20- α-hydroxysteroid dehydrogenase (20 alpha-HSD) expression. These data demonstrate that androgens signalling via AR is required for X-zone regression during puberty. However, interrogation of morphology of hCG treated cohorts revealed no phenotypic changes compared to controls, this demonstrates that hyper stimulation with androgens does not negatively impact the adrenal cortex or influence X-zone morphology. Differences in X-zone morphology and 20 alpha-HSD localization prompted cortex measurements which revealed significant differences in X-zone depth and cell density depending on ablation of AR, circulating androgens or both. This suggests that androgens and androgen receptor are working together and also independently to regulate the adrenal cortex. This result was strengthened through analysis of steroid enzyme genes and cortex markers, which revealed that normal AKR1B7 expression was absent following loss of androgens but not androgen receptor. A final part of this study examined the impacts long term androgen receptor ablation and long term castration in ageing animals. A final part of this study examined the impacts long term androgen receptor ablation and long term castration in ageing animals. These results demonstrate that following prolonged loss of androgens that there is no major disruption to the adrenal cortex. Morphology analysis and X-zone measurements revealed that X-zone regression was occurring in mice with long term castration, characterized by a reduction in size and pockets of vacuolization throughout the X-zone. This phenotype is also observed in ageing females with X-zone regression via vacuolization. These data suggest that following prolonged loss of androgens, the male adrenal is feminized and behaves as such. In contrast, AR ablation only, results in an enlarged adrenal with large spindle cell lesions and X-zone expansion confirmed by X-zone measurements. Initial experiments have demonstrated that androgens can work independently of AR to regulate the adrenal cortex. Together these data suggests that AR is required to control the appropriate action of circulating androgens in the adrenal cortex, with loss of AR resulting in off target signalling from circulating androgens in the adrenal leading to spindle cell hyperplasia, X-zone expansion and X-zone mislocation. A second set of studies were carried out to determine the role of androgen signalling in the female adrenal, specifically, if loss of AR leads to the absence of normal X-zone regression during pregnancy. To answer this question the same selective AR ablation model was used. Analysis of litters comparing observed and expected genetic distribution revealed significantly fewer females being born carrying complete ablation of adrenal AR. Morphology analysis of these mice revealed severe cortex disruption and spindle cell hyperplasia similar to that observed in mutant males. Investigation of adrenals following pregnancy revealed that X-zone regression still occurred despite loss of AR. This result shows that X-zone regression in the female is under different regulation compared to male adrenal and occurs via an androgen-independent signalling mechanism. However, loss of AR still leads to anatomical dysregulation of the adrenal cortex. AR ablation revealed changes in glucocorticoid receptor (GR) expression in the adrenal cortex. To dissect this relationship further a final study was conducted, attempting to ablate GR from the adrenal cortex also using the Cyp11a1 Cre. Initial observations of these mice revealed excessive hair loss through barbering, curved spines and stressed behaviour when monitored in the cage under normal conditions. Immunohistochemistry was used to confirm GR ablation in the adrenal cortex, however, to our surprise, GR expressing cells were not steroidogenic and thus were not targeted by the Cre recombinase. Despite no GR ablation in the adrenal, morphology analysis revealed severe disruption to the adrenal cortex. The Cyp11a1 Cre not only targets the adrenal but is expressed in the hindbrain. To determine if GR ablation in the hindbrain explains the phenotype, we next used PCR analysis interrogating hindbrain genomic DNA to determine if there was recombination of GR. Results confirmed GR recombination in the hindbrain. Due to the observation of stressed behaviour and adrenal cortex disruption, we wanted to determine if this was a result of hyperactivity of the adrenal cortex. Serum corticosterone was analysed and was elevated in these animals. These data revealed that GR ablation in the hindbrain results in adrenal cortex disruption and an elevated stress response, potentially highlighting a new model to investigate stress disorders and their impact on the hypothalamic-pituitary-adrenal axis. Together this data defines new roles for AR signalling in the adrenal cortex and the role of the hindbrain GR signalling in regulating adrenal morphology and function.
125

Análise dos deslocamentos térmicos de eixo-árvores de máquinas-ferramenta em altas rotações / Analysis of mechanical and thermal displacements in high speed machine tool spindles

Silva, Francisco Augusto Vieira da 29 April 2011 (has links)
Made available in DSpace on 2015-05-08T14:59:31Z (GMT). No. of bitstreams: 1 parte1.pdf: 1887121 bytes, checksum: 87cf54641c539882362cc0f679d7c951 (MD5) Previous issue date: 2011-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Machine tools play a key role in modern industrial production; therefore the technological development of machine tool industry has grown over the past decades. High Speed Machining (HSM) is widely used for machining complex and free form surfaces with high geometrical and dimensional accuracy. The spindle is one of the main items of a machine tool. Thus, it becomes necessary to know the influence levels of the main internal sources of heat in a machine tool. These sources basically derive from: transmission of electric engines; friction in drives and gear boxes; machining process (cutting, chip, workpiece); friction in bearings and guides. The dimensional and geometric accuracy of machined parts depends mainly on the performance of the spindle. To admit the idea of a holistic model, and then propose a possible optimization for a high-accuracy machining it is necessary to study and investigate the mechanical and thermal behaviour of the spindle. For that reason, this paper presents an analysis, based on the finite element method, of the mechanical and thermal displacements, as well as a determination of the critical speed of the spindle of the machine tool at high cutting speed. / As máquinas-ferramenta desempenham um papel fundamental nas produções industriais modernas, com isso o avanço tecnológico das indústrias das máquinas-ferramenta vem crescendo ao longo das últimas décadas. A usinagem com Alta Velocidade de corte HSM é largamente utilizada para usinagem de superfícies complexas e de forma livre com alta exatidão geométrica e dimensional. O eixo-árvore é um dos principais elementos de uma máquina-ferramenta. Então, se torna necessário conhecer o grau de influências das principais fontes internas de calor numa máquina-ferramenta. Estas provêm basicamente: Das transmissões dos motores elétricos; Dos atritos nos acionamentos e caixas de engrenagens; Do processo de usinagem (ação de corte, cavacos, peça); Dos atritos nos mancais e guias. A exatidão dimensional e geométrica das peças usinadas dependem principalmente da performance do eixo-árvore. Para que seja admitida a idéia de um modelo holístico, e então, propor uma possível otimização para uma usinagem de alta exatidão é necessário o estudo e a investigação do comportamento mecânico e térmico do eixo-árvore. Por isso, neste trabalho é apresentada a análise, baseada no método dos elementos finitos dos deslocamentos mecânicos e térmicos, bem como, a determinação da velocidade crítica do eixo-árvore da máquina-ferramenta em alta velocidade de corte (HSM).
126

Involvement of PKCzeta, GSK3beta, and MAPK in maintenance of the mitotic spindle

January 2012 (has links)
abstract: In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle. / Dissertation/Thesis / Ph.D. Molecular and Cellular Biology 2012
127

Quels sont les signaux détectés par le point de contrôle du fuseau lors de la méiose dans l'ovocyte de souris ? / What are the signals detected by the spindle assembly checkpoint in mouse oocyte meiosis?

Vallot, Antoine 08 September 2017 (has links)
Au cours de mon travail de doctorat, je me suis intéressé aux mécanismes qui contrôlent la séparation équitable du génome lors de la méiose dans l’ovocyte de souris.Le point de contrôle du fuseau contrôle la ségrégation des chromosomes en méiose : en cas d'attachement incorrect des chromosomes au fuseau, l'anaphase est retardée ce qui permet d'éviter les aneuploïdies. En métaphase, l’attachement des chromosomes homologues aux deux pôles opposés du fuseau, génère une force de tension au niveau des kinétochores. Mon travail de thèse a consisté à déterminer si la tension exercée sur les chromosomes est un signal qui permet de satisfaire le point du contrôle du fuseau en méiose I dans l'ovocyte de souris. Lorsque la tension exercée sur les chromosomes homologues par les microtubules est diminuée par un traitement pharmacologique, la dégradation de la sécurine, qui marque l’entrée en anaphase, est retardée. Si le point de contrôle du fuseau est inhibé en absence de tension, l’anaphase n’est pas retardée, ce qui indique que le point de contrôle du fuseau est sensible à la tension.Nous avons aussi montré que la kinase Aurora B/C n’est pas requise pour la réponse du point de contrôle du fuseau aux chromosomes non attachés, mais qu’elle est essentielle à la réponse du point de contrôle du fuseau à la baisse de tensionDans un contexte où les erreurs de ségrégation en méiose sont très fréquentes chez la femme et augmentent drastiquement avec l'âge, nos travaux pourraient permettre d'identifier si ces mécanismes de contrôle sont diminués et moins efficaces avec l'âge chez la femme. / At each cell division, chromosomes must be faithfully segregated so that exactly one set of chromosomes is passed on to the next generation. The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation in meiosis: upon uncorrect attachment of the chromosome to the spindle, anaphase onset is delayed in order to avoid chromosome missegregation and aneuploidies. For my PhD thesis, I wanted to determine whether tension applied by the spindle microtubules on the chromosomes is itself a signal that satisfies the SAC in mouse oocyte meiosis I. When tension is decreased by small molecule inhibitors, securin degradation, which is a readout of anaphase onset, is delayed. If the SAC is inhibited, then tension defects cannot delay anaphase onset. This indicates that the SAC is able to delay anaphase onset upon tension defects.Furthermore, we showed that Aurora B/C kinase is not required for the SAC response to unattached chromosomes but that Aurora B/C is required for the SAC response to tension defects.Chromosome segregation errors are very common in women and increase with age. In that context, our work could help to identify whether these key control mechanisms are less efficient in the mammalian oocyte with age.
128

Micromachining Metrology: Measurement and Analysis of Dynamic Tool-tip Trajectory when using Ultra-High-Speed Spindles

Nahata, Sudhanshu 01 May 2018 (has links)
There is a growing demand for miniature, high-precision components and devices with micro-scale features for applications in biomedical systems, aerospace structures, and energy storage/conversion systems. Mechanical micromachining has become a leading approach to address this demand. In micromachining, a micro-scale cutting tool, such as a micro-endmill with a diameter as small as 10 um, is rotated by an ultra-high-speed (UHS) spindle (speeds greater than 60,000 rpm, reaching up to 500,000 rpm) to mechanically remove the material from a workpiece. Although micromachining resembles the traditional computer numerically controlled (CNC) machining processes, the micron-scale cutting tools, ultra-high-speed (UHS) spindles, and considerably tighter tolerance requirements bring unique challenges to micromachining.
129

Textile tools and production at a Mycenaean secondary centre

MacDonald, Max K. 31 August 2017 (has links)
This thesis is a study of textile production in the Late Bronze Age, using new evidence uncovered by excavations at Ancient Eleon in Boeotia, Greece. Textile production is a nearly forgotten art. To the Mycenaeans of the Greek Late Bronze Age (ca. 1700-1100 BCE) textiles were nearly a form of currency, and a symbol of power. This thesis begins by examining the Mycenaean administration of textile production, which was systematically controlled by the palatial centres of Greece and Crete. Linear B documents record resources and workers under palatial control, and the amounts of cloth that they were expected to produce. The Mycenaean palace at Thebes was the administrative centre that controlled the region of eastern Boeotia, including sites such as Eleon. No document directly links textile production at Eleon to Thebes, but other Theban tablets and the two sites’ close proximity suggest a similar relationship to other Mycenaean centres and their dependents. Usually, ancient textiles from Greece do not survive in the archaeological record. The only evidence that remains is the Linear B archives and the tools of production. Linear B tablets have not been found at Eleon, but many spindle whorls for yarn production, loom weights for weaving, and other tools indicating the production of textiles have been recovered from the site. This thesis discusses the significance of these objects and attempts to place Eleon in the greater context of the Mycenaean textile industry. / Graduate
130

Autonomní nervový systém a jeho vztah k funkčním poruchám svalu / Autonomic nervous system and its relationship to functional disorders of the muscle

Marčišová, Hana January 2007 (has links)
The aim of this paper was to summarize the current knowledge of function and regulation of autonomic nervous system (ANS). We wanted to assess possible involvement of ANS in changes of muscle tension. Sympathetic nervous system affects the sensitivity of somatosenzory afferention, thus effecting the function of whole nervous system. Exists evidence about ANS effect on cutaneous afferents activity as well as muscle spindle afferent activity. Sympathetic modulation of proprioceptive information from muscle spindles may influence α motoneuron excitability. ANS may affect muscle tonus regulation. The selective activation of trigger point (TRP) during heightened muscle sympathetic efferent activity (MSNA) was proved. This supports the idea that the sympathetic nervous system can directly contribute on maintaining of the TRP and myofascial pain syndrome. Powered by TCPDF (www.tcpdf.org)

Page generated in 0.0699 seconds