Spelling suggestions: "subject:"spintronics"" "subject:"pintronics""
221 |
Interface and multifunctional device spintronics : studies with synchrotron radiation / Spintronique multifonctionnelle : des interfaces aux dispositifs : étude par rayonnement synchrotronStudniarek, Michal 10 November 2016 (has links)
La spintronique multifonctionnelle est une nouvelle direction d'avancement pour aller au-delà des limites de l'électronique moderne. Il vise à développer des dispositifs qui seraient sensibles à plus d’un stimulus et/ou ont un signal multi-réponse. Dans cette thèse, nous explorons cette voie multifonctionnelle émergente en combinant l’électronique de spin et les systèmes organiques pour ouvrir la voie vers des dispositifs polyvalents. Nous étudions la formation d'une spinterface dans le système Co/manganèse-phthalocyanine. Nous proposons l'introduction de multifonctionnalités intrinsèques en utilisant des matériaux à transition de spin. Nous développons une nouvelle approche de fonctionnalisation pour ajuster leurs propriétés vers des applications. Nous proposons un contrôle fonctionnel externe sur une spinterface en utilisant un substrat multiferroïque. Dans le cadre de cette thèse, un insert polyvalent à température variable a été développé à la ligne de lumière DEIMOS du synchrotron SOLEIL. Nous démontrons comment il peut être utilisé pour sonder des atomes actifs dans n'importe quel dispositif électronique. / Multifunctional spintronics is a new direction of advancement beyond the limits of modern electronics. By combining elementary charge of an electron and its spin, it aims to develop devices which would be sensitive to more than one stimuli and/or have multiresponse signal. In this thesis, we explore the multifunctional potential emerging while combining spin electronic and organic systems to pave the way towards multipurpose devices. First, we study formation of a ferromagnetic/organic spinterface in Co/manganese-phthalocyanine system. We propose introduction of intrinsic multifunctionality by using spin crossover materials. We develop a novel functionalization approach for tuning their properties towards device applications. We propose an external functional control over any hybrid spinterface by using multiferroic substrate. In the framework of this thesis, a Versatile Variable Temperature Insert was developed at the DEIMOS beamline of the SOLEIL synchrotron. We demonstrate how it can be used to probe active atoms in any microelectronic device.
|
222 |
Ferromagnet [and] phthalocyanines heterostructures for spintronics applications / Hétérostructures à base de métaux ferromagnétiques et de phthalocyanine pour des applications en spintroniqueAl Daboochah, Hashim Mohammed Jabbar 16 November 2015 (has links)
La mise en évidence d’effets de polarisation d’échange (“exchange bias”, EB) ouvre de nouvelles perspectives dans le domaine émergeant de la spintronique organique. Dans une première partie de la thèse, on étudie l’EB des systèmes Co/MPc et Py/MPc (M=Mn, Co, Fe, Zn) par magnétométrie. Pour tous ces systèmes, l’EB est observé avec des températures de blocage de 100K environ. Ces études sont complétées par des mesures de résonance ferromagnétique confirmant les valeurs du champ de polarisation. Dans une troisième partie, on étudie les propriétés magnétiques des tricouches Co/Pc/Co. Les cycles d’hystérèse présentent des marches indiquant un renversement séquentiel des couches de cobalt. A basse température, on observe de l’anisotropie unidirectionnelle pour les deux couches mais leurs champs de polarisation diffèrent. / Observation of exchange bias (EB) phenomenon by using molecular materials as a pinninglayer open the horizon for tremendous perspective in the field of organic spintronics. Thefirst part of the thesis is devoted to the study of EB of Co/MPc and Py/MPc (M=Mn, Co, Fe,Zn) by static magnetometry. The existence of EB is evidenced in all Pc molecules with block-ing temperature around 100K. The second part is devoted to the study of EB by dynamicFMR measurements. The values of EB measured by this method are compatible with staticmagnetometry measurements. The third part is devoted to study magnetic properties of thetrilayer Co/Pc/Co systems. Hysteresis loops exhibit a stepped shape indicative of successivereversal of each layer. Low temperature loops show that both Co layers experience unidi-rectional anisotropy after field cooling, with differing bias fields.
|
223 |
Current-induced torque driven ferromagnetic resonance in magnetic microstructuresFang, Dong January 2011 (has links)
This Dissertation explores the interaction between the magnetisation and an alternating current in a uniform ferromagnetic system. Diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P) have been studied. Due to their strong spin-orbit coupling and well-understood band-structure, these materials are well-suited to this investigation. The combined effect of spinorbit coupling and exchange interaction permits the alternating current to induce an oscillating current-induced torque (CIT) on the magnetisation. In the frequency range close to the natural resonance frequency of the magnetic moments (gigahertz), CIT can excite precessional motion of the magnetisation, a process known as ferromagnetic resonance (FMR). CIT can be parameterised by an effective magnetic field. By analysing the lineshape of the measured FMR signals, the magnitude and orientation of this effective field have been accurately determined. Moreover, the current-induced fields in these ferromagnetic materials have been observed with symmetries of the Dresselhaus, and for the first time, Rashba spin-orbit coupling. A new class of device-scale FMR technique, named as CIT-FMR, has been established in this Dissertation, with the advantage of simple device structure (only a resistor is required) and scalability (measurements have been performed on devices sized from 4 μm down to 80 nm). This technique is not only limited to magnetic semiconductors, but can also be transferred to study other ferromagnetic systems such as ultrathin metal films. Finally, the CIT-FMR technique is employed to study the magnetic anisotropyin individual (Ga,Mn)As and (Ga,Mn)(As,P) micro-devices. Devices down to 80 nm in width have been measured in (Ga,Mn)(As,P), which show strong strain-relaxation-induced anisotropy, larger than any previously reported cases on (Ga,Mn)As. Furthermore, due to the tensile-strain on the (Ga,Mn)(As,P) epilayers, the anisotropy field due to patterning-induced strain-relaxation in these devices is observed to take the opposite direction compared to that in the compressively-strained (Ga,Mn)As samples.
|
224 |
Nouveaux systèmes modèles à aimantation perpendiculaire pour l'étude des effets de transfert de spin / New model systems with perpendicular magnetic anisotropy for spin transfer torque experimentsGottwald, Matthias 30 September 2011 (has links)
Les effets de transfert de spin sont devenus un sujet de recherche majeur ces quinze dernières années. Cependant, un manque de vérifications expérimentales pour beaucoup de modèles décrivant les effets de transfert de spin peut être constaté. Ceci est surtout lié à un manque de systèmes magnétiques modèles permettant un contrôle précis des paramètres pertinents utilisés dans les modèles théoriques. Dans ce travail deux systèmes magnétiques à aimantation perpendiculaire ont été analysés : les alliages amorphes de Co1-xTbx élaborés par pulvérisation cathodique et les super-réseaux [Co/Ni](111) élaborés par épitaxie par jets moléculaires. L'anisotropie et l'aimantation, qui sont des paramètres pertinents dans beaucoup de modèles sur le transfert de spin, sont variables dans une large gamme. L'origine de cette anisotropie est discutée. La structure des domaines magnétiques est analysée et les résultats des mesures de transport sont interprétés. Pour les super-réseaux [Co/Ni](111) une forte polarisation en spin au niveau de Fermi est démontrée grâce à des expériences de photo émission résolue en spin et un coefficient d'amortissement intrinsèque [alpha] très faible est trouvé. Il est conclu que les alliages amorphes de Co1-xTbx et les super-réseaux [Co/Ni](111) sont des systèmes modèles pour le transfert de spin. / Spin transfer torque effects have become a research subject of high interest during the last 15 years. However, in order to probe the fundamental physics of spin transfer torque model systems are needed. For a model system it must be as simple as possible to tune the significant parameters (magnetic and structural). In this work we analyze the suitability of two materials for this need. The studied materials are amorphous Co1-xTbx alloys elaborated by sputtering and MBE grown [Co/Ni](111) superlattices. Both systems show perpendicular magnetic anisotropy (PMA), which provides a uniaxial anisotropy to the system. This anisotropy and the magnetization, which are significant parameters for many models on spin transfer torque, can be tuned in a large range of values. The origin of this PMA is discussed. The domain structure is analyzed and transport measurements are interpreted. In addition we show a strong spin polarization of the electrons close to the Fermi level by doing photoemission experiments. A small intrinsic Gilbert damping parameter [alpha] is found by FMR spectroscopy. We conclude that both materials are good candidates to be used as model systems for spin transfer torque
|
225 |
Estudo dos compostos semicondutores de metais de transição - Grupo V para aplicação em spintrônica / AB Initio study of transition metals nitrides for spintronics applicationsRibeiro Junior, Mauro Fernando Soares 07 December 2006 (has links)
Recentemente um enorme esforço esta sendo feito na busca de bons materiais para aplicação na nova área emergente da eletrônica, a spintrônica. O estudo teórico tem se mostrado de fundamental importância em tal busca. Na presente dissertação estão alguns dos resultados de um estudo computacional envolvendo cálculos de primeiros princípios em Física dos Materiais. Utilizamos a ferramenta Vienna Ab-initio Simulation Package com suas implementações de funcionais de troca-correlação, para simular sistemas cristalinos de nitretos dos metais de transição (MT) vanádio (V), cromo (Cr), ferro (Fe) e cobalto (Co) na composição do tipo N-MT. Tomando como base a importância geral dos semicondutores existentes, escolhemos as estruturas zincblende(B3) e wurzita(B4), bem como a estrutura NaCl (B1) - esta ´ultima apenas para alguns cálculos do CrN. Determinamos teoricamente as constantes de rede de todos os materiais com a realização de minimizações completas das estruturas, relaxando os parâmetros geométricos. Tais resultados mostraram-se de ótima capacidade preditiva quando comparados com os valores experimentais. Sempre com o foco na spintrônica, estudamos diversas configurações magnéticas, e conseguimos com sucesso obter alguns materiais ferromagnéticos em seu estado fundamental. Seguindo a idéia de aplicação, estudamos o magnetismo dos diversos nitretos sob tensionamento hidrostático (expansão e compressão da célula), obtendo excelentes resultados, como o interessante caminho de transição magnética para o estado de meio-metal para os materiais na estrutura zincblende. Notadamente, as constantes el´asticas e bulk moduli de muitos materiais foram determinados - segundo os nossos conhecimentos, alguns deles pela primeira vez. Também realizamos um estudo inicial da estrutura eletrônica, com cálculos de densidades de estados e estruturas de bandas, tanto no estado fundamental, como sob tensionamento, e verificamos com sucesso a teoria de Stoner do magnetismo itinerante. Finalizamos o trabalho tocando no problema do tensionamento biaxial (planar), com o objetivo de estudar o magnetismo, a estrutura eletrônica e a estabilidade dos nitretos magnéticos, particularmente do CrN zincblende, no processo de crescimento epitaxial de filmes e heteroestruturas. / Recently a huge effort is been done to find good materials in order to aplied in a new eletronic area, spintronics.
|
226 |
Energy Efficiency of Computation in All-spin Logic: Projections and Fundamental LimitsChen, Zongya 19 March 2019 (has links)
Built with nanomagnets, a spintronic device called the all-spin logic (ASL) device carries information with only spin currents, resulting in a low power supply--10 mV. This voltage is 100 times smaller than the conventional CMOS devices (usually 0.8~1V). The potential for improved energy efficiency made possible by the low operating voltage of ASL makes it one of the most promising devices among its post-CMOS competitors.
The basic working principles of ASL device are introduced in this thesis and two complementary approaches to studying energy efficiency of computation are applied to a common set of ASL circuits: (1) a circuit simulation approach that provides efficiency estimates for specific ASL circuit realizations, and (2) a physical-information-theoretic approach that reveals fundamental efficiency bounds for ASL circuits as limited by irreversible information loss.
The results of this study support the expectation that the energy efficiency of computation in ASL can far exceed that of CMOS. However, it also reveals that ASL efficiencies--shown to exceed fundamental limits by many orders of magnitude in the ASL implementations studied here--are unlikely to approach fundamental limits because of the unavoidable energetic overhead cost of maintaining spin currents.
|
227 |
Impact of Disorder on Spin Dependent Transport PhenomenaSaidaoui, Hamed Ben Mohamed 03 July 2016 (has links)
The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins.
The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling.
Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using spin-orbit coupling. In both cases, we demonstrated that the torque is much more robust against impurities, which opens appealing venues for its experimental observation.
Extrinsic spin-orbit coupled systems - In disordered metals accommodating spin orbit coupled impurities, it is well-known that spin Hall effect emerges due to spin dependent Mott scattering. Following a recent prediction, we showed that another effect coexists: the spin swapping effect, that converts an incoming spin current into another spin current by "swapping" the momentum and spin directions. We showed that this effect can generate peculiar spin torque in ultrathin magnetic bilayers.
Semiconductors spintronics - This last field of research has attracted a massive amount of hope in the past fifteen years, due to the ability of coherently manipulating the spin degree of freedom through interfacial, so-called Rashba, spin-orbit coupling. However, numerical simulations failed reproducing experimental results due to coherent interferences between the very large number of modes present in the system. We showed that spin-independent disorder can actually wash out these interferences and promote the conservation of the spin signal. In the course of this PhD, we showed that while disorder-induced dephasing is usually detrimental to the transmission of spin information, in selected situation, it can actually promote spin transport mechanisms and participate to the enhancement of the desired spintronics phenomenon.
|
228 |
PAOFLOW-Aided Computational Materials DesignWang, Haihang 12 1900 (has links)
Functional materials are essential to human welfare and to provide foundations for emerging industries. As an alternative route to experimental materials discovery, computational materials designs are playing an increasingly significant role in the whole discovery process. In this work, we use an in-house developed python utility: PAOFLOW, which generates finite basis Hamiltonians from the projection of first principles plane-wave pseudopotential wavefunctions on pseudo atomic orbitals(PAO) for post-process calculation on various properties such as the band structures, density of states, complex dielectric constants, diffusive and anomalous spin and charge transport coefficients. In particular, we calculated the dielectric function of Sr-, Pb-, and Bi-substituted BaSnO3 over wide concentration ranges. Together with some high-throughput experimental study, our result indicates the importance of considering the mixed-valence nature and clustering effects upon substitution of BaSnO3 with Pb and Bi. We also studied two prototype ferroelectric rashba semiconductors, GeTe and SnTe, and found the spin Hall conductivity(SHC) can be large either in ferroelectric or paraelectric structure phase. Upon doping, the polar displacements in GeTe can be sustained up to a critical hole concentration while the tiny distortions in SnTe vanish at a minimal level of doping. Moreover, we investigated the sensitivity of two dimensional group-IV monochalcogenides to external strain and doping, which reveal for the first time giant intrinsic SHC in these materials, providing a new route for the design of highly tunable spintronics devices based on two-dimensional materials.
|
229 |
Circuit Simulation of All-Spin LogicAlawein, Meshal 05 1900 (has links)
With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge.
By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby
a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents.
The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other
effects like spin Hall effect and spin-orbit torque. In this thesis, we propose an improved stochastic magnetization dynamics/time-dependent spin transport model based on a finite-difference scheme of both the temporal and spatial derivatives to capture the key features of ASL. The approach yields new finite-difference conductance matrices, which, in addition to recovering the steady-state results, captures the dynamic behavior. The new conductance matrices are general in that the discretization framework can be readily
applied and extended to other spintronic devices. Also, we provide a stable algorithm that can be used to simulate a generic ASL switch using the developed model.
|
230 |
Jonctions tunnel magnétiques stochastiques pour le calcul bioinspiré / Stochastic magnetic tunnel junctions for bioinspired computingMizrahi, Alice 11 January 2017 (has links)
Les jonctions tunnel magnétiques sont des candidats prometteurs for le calcul. Mais quand elles sont réduites à des dimensions nanométriques, conserver leur stabilité devient difficile. Les jonctions tunnel magnétiques instables subissent des renversements aléatoires de leur aimantation et se comportent comme des oscillateurs stochastiques. Pourtant, la nature stochastique de ces jonctions tunnel superparamagnétiques n’est pas une faille mais un atout qui peut être utilisé pour le calcul bio-inspiré. En effet, notre cerveau a évolué de sorte qu’il puisse fonctionner dans un environnement bruité et avec des composants instables. Dans cette thèse, nous montrons plusieurs applications possibles des jonctions tunnel superparamagnétiques.Nous démontrons qu’une junction tunnel superparamagnétique peut être synchronisée en fréquence et en phase à une faible tension oscillante. De manière contre intuitive, notre expérience montre que cela peut être fait grâce à l’injection de bruit dans le système. Nous développons un modèle théorique pour comprendre ce phénomène et prédire qu’il permet un gain énergétique d’un facteur cent par rapport à la synchronisation d’oscillateurs à transfert de spin traditionnels. De plus, nous utilisons notre modèle pour étudier la synchronisation de plusieurs jonctions couplées. De nombreuses méthodes théoriques réalisant des tâches cognitives telles que la reconnaissance de motifs et la classification grâce à la synchronisation d’oscillateurs ont été proposés. Utiliser la synchronisation induite par le bruit de jonctions tunnel superparamagnétiques permettrait de réaliser ces tâches à basse énergie.Nous faisons une analogie entre les jonctions tunnel superparamagnétiques et les neurones sensoriels qui émettent des pics de tension séparés par des intervalles aléatoires. En poursuivant cette analogie, nous démontrons que des populations de jonctions tunnel superparamagnétiques peuvent représenter des distributions de probabilité et réaliser de l’inférence Bayésienne. De plus, nous démontrons que des populations interconnectées peuvent faire du calcul, notamment de l’apprentissage, des transformations de coordonnées et de la fusion sensorielles. Un tel système est faisable de manière réaliste et pourrait permettre de fabriquer des capteurs intelligents à bas coût énergétique. / Magnetic tunnel junctions are promising candidates for computing applications. But when they are reduced to nanoscale dimensions, maintaining their stability becomes an issue. Unstable magnetic tunnel junctions undergo random switches of the magnetization between their two stable states and thus behave as stochastic oscillators. However, the stochastic nature of these superparamagnetic tunnel junctions is not a liability but an asset which can be used for the implementation of bio-inspired computing schemes. Indeed, our brain has evolved to function in a noisy environment and with unstable components. In this thesis, we show several possible applications of superparamagnetic tunnel junctions.We demonstrate how a superparamagnetic tunnel junction can be frequency and phase-locked to a weak oscillating voltage. Counterintuitively, our experiment shows that this is achieved by injecting noise in the system. We develop a theoretical model to understand this phenomenon and predict that it allows a hundred-fold energy gain over the synchronization of traditional dc-driven spin torque oscillators. Furthermore, we leverage our model to study the synchronization of several coupled junctions. Many theoretical schemes using the synchronization of oscillators to perform cognitive tasks such as pattern recognition and classification have been proposed. Using the noise-induced synchronization of superparamagnetic tunnel junctions would allow implementing these tasks at low energy.We draw an analogy between superparamagnetic tunnel junctions and sensory neurons which fire voltage pulses with random time intervals. Pushing this analogy, we demonstrate that populations of junctions can represent probability distributions and perform Bayesian inference. Furthermore, we demonstrate that interconnected populations can perform computing tasks such as learning, coordinate transformations and sensory fusion. Such a system is realistically implementable and could allow for intelligent sensory processing at low energy cost.
|
Page generated in 0.0477 seconds