• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 20
  • 11
  • 11
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Generation of attosecond X-ray pulses in free-electron lasers using electron energy modulation and undulator tapering

Boholm Kylesten, Karl-Fredrik January 2023 (has links)
Free-electron lasers (FELs) are among the world's most intense artificial artificial sources of coherent light and are tunable to various wavelengths, including the X-ray spectrum. X-ray FELs (XFELs) are extremely useful for diffraction experiments to study molecules, materials, and quantum systems. A FEL consists of an electron accelerator and a structure of magnets called an undulator. The undulator has a periodic magnetic field, and when an electron beam passes through the undulator, the Lorentz force forces the electrons to oscillate and emit what is known asspontaneous undulator radiation. Initially, the undulator radiation is spontaneously emitted and incoherent. However, aAs the electrons interact with this initial spontaneous undulator radiation, they change their relative positions and form micro-bunches of electrons. These microbunches are shorter than the undulator radiation wavelength. Hence, the waves emitted by the electrons from the same microbunch arethey become in phase, meaning the radiation is now coherent with the radiation field, and the state of coherence develops. This process is known as self-amplified spontaneous emission (SASE). Due to the coherence, tThe radiation intensity grows exponentially along the undulator, forming several peaks in the radiation pulse known as SASE spikes. One technique for obtaining ultra-short laser pulses is to isolate single SASE spikes by controlling where, along the electron beam, the SASE spikes can grow. This growth limitation is archieved by modulating the electron energies, thus only allowing electrons at specific positions along the electron beam to radiate. In addition, to keep positive interference between undulator radiation from electrons with different energies, the energy modulation must be compensated with a gradient of the magnetic field amplitude of the undulator, so-called tapering. There are plans to implement this technique at one of the beamlines at the European X-ray FEL (EuXFEL) to generate attosecond X-ray pulses and study quantum systems. One goal of the design process is to choose design parameters for the electron beam's modulation amplitude and the undulator's tapering coefficient. These design parameters shall be chosen so that the XFEL will have as short pulse duration as possible while at the same time not getting too low peak power. This thesis aims to study the effect of electron energy modulation and undulator tapering on the SASE and how the modulation amplitude and the tapering coefficient affect the XFEL's peak power and pulse duration. A model was developed to simulate SASE with a modulated electron beam in a tapered undulator. With this model, a parameter scan gave the average peak power and pulse duration as functions of the modulation amplitude and the tapering coefficient. The parameter scan showed that the peak power and the pulse duration decrease as the modulation amplitude and the tapering coefficient increase. Therefore, a trade-off exists between high peak power and short pulse duration. It was possible to exclude sets of the parameters that gave too low peak power or long pulse duration. This study also found an optimum range for the tapering coefficient where the peak power had a local maximum without a significant increase in pulse duration. The physics behind this optimal tapering coefficient is also discussed in connection to the electrons' energy modulation.
22

Optical Properties of Deoxyribonucleic Acid (DNA) and Its Application in Distributed Feedback (DFB) Laser Device Fabrication

Yu, Zhou 03 October 2006 (has links)
No description available.
23

Lumière dans des vapeurs atomiques opaques : piégeage radiatif, laser aléatoire et vols de Lévy / Light in opaque atomic vapour : radiation trapping, random laser and Lévy flights

Baudouin, Quentin 17 October 2013 (has links)
L'interaction matière-lumière dans des milieux opaques donne lieu à des phénomènes collectifs nécessitant le couplage d'équations atomiques et d'une équation de transport. Le piégeage de la lumière dans un système atomique multi-niveaux sera étudié expérimentalement dans une vapeur froide et théoriquement avec le couplage des paramètres atomiques à une équation de diffusion. Ensuite, du gain sera ajouté dans ce nuage d'atomes froids multi niveaux. Nous montrerons théoriquement qu'un seuil laser existe dans ce type de système combinant gain et diffusion et qu'expérimentalement le gain Raman associé à de la diffusion sur une raie résonante a permis l'observation d'un laser aléatoire à atomes froids. La validité de l'équation de diffusion nécessite une non redistribution en fréquence et donc des atomes suffisamment froids pour s'affranchir de l'effet Doppler. Finalement nous étudierons le transport dans une vapeur atomique chaude (20°C-180°C) opaque. L'effet Doppler invalide la loi de Beer-Lambert pour la longueur des pas des photons entre des diffusions qui suivent alors une statistique de Lévy. / The matter-light interaction in opaque media gives rise to collective effects which may be explained by the coupling between atomic equations and light transfer equation. The trapping of light in an opaque multi-levels atomic system will be studied experimentally in a cold vapour and theoritically. Then, this vapour will be in situation with gain and amplification of light occurs. We will show that a laser threshold exists with this kind of system. Experimentally, the mixing of Raman gain and multiple scattering on a resonant line allowed the abservation a cold-atom random laser. The validity of diffusion equation needs a non frequency shift and so the temperature of atoms should be sufficiently cold to avoid Doppler effect. Finally we study the transport of light in an opaque hot atomic vapour (20°C-180°C). The Doppler effect breaks the Beer-Lambert law for photons step size distribution which is then a Levy flight statictics.
24

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Mota, Achiles Fontana da 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
25

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Achiles Fontana da Mota 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
26

O estudo do emaranhamento na emissão espontânea no espaço livre e em uma cadeia de osciladores harmônicos acoplados

Monteiro, João Frederico Haas Leandro 11 March 2010 (has links)
Made available in DSpace on 2017-07-21T19:25:58Z (GMT). No. of bitstreams: 1 Joao Frederico.pdf: 2218397 bytes, checksum: 781c58d12bce3113c45da4e65bd0e36d (MD5) Previous issue date: 2010-03-11 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / In this dissertation, we studied entanglement in some fundamental systems of physics, such as an excited atom in free-space spontaneously decaying and coupled harmonic oscillators. In order to study entanglement in spontaneous emission in free-space, we employed theWeisskopf-Wigner theory which allowed us to obtain the time evolution of both the atom and field states. In the case of bipartite entanglement among field modes after spontaneous emission, we showed that the modes can become highly entangled and that the features of this entanglement strongly depend on the way the partitions are made. For the entanglement between atom and field during spontaneous emission, we were able to relate entanglement to a well known physical quantity namely the lifetime of an atom in a excited state. Keeping in mind the intention to study simple but relevant physical systems, we used in the second work a chain of coupled harmonic oscillators. It was well-known among researchers in the field of quantum information that a linear chain of coupled oscillators in the rotating wave approximation and prepared in classical states would never create entanglement. Then, we used two reference oscillators prepared in squeezed states to make creation of entanglement possible. We found results concerning the relationship between the phases in the reference oscillators’ state and dynamics of entanglement in the chain for some coupling configurations. We showed that it is not always true that squeezing can favor entanglement creation and that with the configuration used by us it is possible to localize entanglement. We proposed a possible implementation of our results in coupled microelectromechanical systems. / Nesta dissertação estudamos o emaranhamento em alguns sistemas fundamentais da Física, como um átomo no espaço livre realizando emissão espontânea e em osciladores harmônicos acoplados. Para o estudo do emaranhamento na emissão espontânea no espaço livre, utilizamos a teoria de Weisskopf-Wigner que nos permitiu obter a evolução temporal, tanto do estado do átomo, quanto do estado do campo. Para o caso de emaranhamento bipartido entre os modos do campo após a emissão espontânea, mostramos que os modos podem ficar altamente emaranhados e que as características desse emaranhamento dependem fortemente de como são realizadas as partições. Para o emaranhamento entre o átomo e o campo durante a emissão espontânea, pudemos relacionar o emaranhamento com uma quantidade Física bastante conhecida, o tempo de vida do átomo no seu estado excitado. Ainda com o intuito de estudar sistemas físicos simples, mas de relevância na Física, utilizamos, em um segundo trabalho, uma cadeia de osciladores harmônicos acoplados. Já era bem conhecido dos pesquisadores na área de informação quântica que uma cadeia linear de osciladores acoplados, na aproximação de onda girante e preparados em estados clássicos, não cria emaranhamento. Assim, utilizamos dois osciladores de referência em estados comprimidos para permitir a criação de emaranhamento. Encontramos resultados a respeito da relação das fases dos osciladores de referência e a dinâmica do emaranhamento na cadeia para algumas configurações de acoplamentos. Mostramos que nem sempre a compressão dos estados comprimidos favorece a criação de emaranhamento e que na configuração utilizada por nós é possível localizar o emaranhamento. Nós propusemos uma possível implementação de nossos estudos em sistemas microeletromecânicos acoplados.
27

Gestion de l'émission spontanée amplifiée et de la thermique d'un système laser solide de haute puissance moyenne pompée par diodes – le système laser Lucia

Albach, Daniel 28 April 2010 (has links) (PDF)
Le développement du laser a ouvert la voix à l'exploration de nouveaux domaines scientifiques et industriels. Les impulsions laser à haute intensité sont un outil unique pour les études d'interaction lumière/matière et leurs applications. Mais elles sont générées par des systèmes laser reposant sur l'utilisation de milieux à gain en verre pompés par des lampes flashes et sont donc intrinsèquement limitées en termes de cadence et d'efficacité. Le développement, au cours de ces dernières années, des lasers semi-conducteurs a attiré l'attention sur une nouvelle classe de lasers, les « laser solides pompés par diodes » (DPSSL). Ils possèdent une grande efficacité et sont des candidats de choix pour les systèmes compacts à haute puissance moyenne requis pour des applications industrielles, mais aussi en tant que sources de pompe à haute puissance pour des lasers ultra-intenses. Les travaux décrits dans cette thèse s'inscrivent dans le cadre du système laser Lucia (1 kilowatt de puissance moyenne), actuellement en construction au «Laboratoire d'Utilisation des Intenses lasers» (LULI) à l'Ecole Polytechnique, France. La génération d'impulsions laser de durée sub-10 nanosecondes avec des énergies allant jusqu'à 100 joules et des taux de répétition de 10 hertz est principalement limitée par l'émission spontanée amplifiée (ASE) et les effets thermiques. L'étude de ces limitations est le thème central de ce travail. Leur impact est discuté dans le cadre d'un premier jalon énergétique fixé vers 10 joules. Le système laser mis au point est présenté en détails depuis l'oscillateur jusqu'à la fin de la chaine d'amplification. Une discussion complète de l'impact de l'ASE et des effets thermiques est complétée par des vérifications expérimentales. Les modèles de simulation informatique développés sont validés puis utilisés pour prédire les performances du système laser qui, lors d'une première activation, à atteint un niveau d'énergie de 7 joules en régime mono-coup et de 6,6 joules pour un taux de répétition de 2 hertz. Les limitations actuelles sont discutées ainsi que les approches envisagées pour des développements futurs.
28

Plasmonic cavities and optical nanosources

Derom, Stéphane 17 December 2013 (has links) (PDF)
Optical microcavities exhibit high resonance quality, so that, they are of key interest for the design of low-threshold lasers or for achieving strong coupling regime. But, such systems support modes whose the volume remain diffraction limited.In this manuscript, we are interested in their plasmonic counterparts because they support confined modes at the sub-wavelength scale. First, we study an in-plane plasmonic cavity which is the transposition of 1D optical cavity to surface wave. We characterize the cavity by measuring the fluorescence lifetime of dye molecules deposited inside.Then, we are interested in 3-dimension mode confinement achieved by spherical metal nanoparticles. We discuss on the definition of the mode volume used in cavity quantum electrodynamic and based on the calculation of energy confinement around the particle. We also simulate the fluorescence enhancement of rare-earth ions embedded inside core-shell plasmonic particles. Finally, we disturb the photodynamic emission of a single-photon source by puttingthe extremity of a plasmonic tip nearby the emitter
29

Commutation tout optique ultra-rapide de micropiliers semi-conducteurs : propriétés fondamentales et applications dans le domaine de l'optique quantique / All-optical ultrafast switching of semiconductor micropillar cavities : basics and applications to quantum optics

Peinke, Emanuel Thomas 05 April 2016 (has links)
Il est possible de modifier en quelques picosecondes les fréquences de résonance d’une microcavité optique semiconductrice en injectant optiquement des porteurs de charge dans le semiconducteur. Dans cette thèse, nous étudions en détail de tels évènements de commutation tout-optique pour des cavités planaires et des cavités en forme de micropilier à base de GaAs/AlAs, en utilisant l’émission de boîtes quantiques intégrées dans ces cavités comme source interne de lumière pour sonder la fréquence des modes résonnants en fonction du temps. Des décalages en fréquence très conséquents, de l’ordre de 34 fois la largeur du mode considéré, sont obtenus après optimisation. Nous réalisons une commutation différentielle des modes d’un micropilier en injectant les porteurs de manière très localisée, et modélisons les comportements observés en prenant en compte la distribution des porteurs injectés ainsi que leur diffusion et leur recombinaison en fonction du temps. Nous étudions par ailleurs deux applications potentielles importantes de la commutation ultrarapide de cavité. D’une part, nous modélisons le changement de couleur qui est induit sur de la lumière piégée dans un mode de cavité lors d’un évènement de commutation. Nous montrons que pour une cavité planaire optimisée, une telle conversion de fréquence peut être réalisée de façon très efficace. D’autre part, la commutation de cavité peut aussi être employée pour contrôler en temps réel l’émission spontanée d’émetteurs intégrés, et plus généralement tous les effets d’électrodynamique quantique en cavité. Nous présentons la génération d’impulsions de lumière incohérente de quelques picosecondes seulement, en utilisant l’émission spontanée de boîtes quantiques dans un micropilier commuté. Nous montrons aussi par une étude théorique qu’il est possible de donner une forme choisie aux impulsions à un photon émises par une boîte quantique, ce qui ouvre des applications intéressantes dans le domaine des liens optiques quantiques et du traitement quantique photonique de l’information. / The resonance wavelengths of semiconductor optical microcavities can be changed within few picoseconds through the optical injection of free charge carriers. In this PhD thesis, we study in detail such “cavity switching” events for GaAs/AlAs planar and micropillar cavities, using the spontaneous emission of embedded QDs as an internal light source to probe the time-dependent frequencies of the cavity modes. Switching amplitudes as large as 34 mode linewidths are observed for optimized pumping conditions. Differential switching of micropillar modes is achieved by performing a localized injection of charge carriers, and modeled by taking into account their injection profile, diffusion and recombination processes. We investigate two important potential applications of cavity switching in the field of quantum optics. On one hand, we model the frequency conversion of light trapped in a cavity mode, which is induced by a switching event, and show that adiabatic and highly efficient frequency conversion can be achieved in properly designed planar cavities. On the other hand, cavity switching appears as a powerful resource to control in real-time the spontaneous emission of embedded emitters and more generally CQED effects. As a first example, we demonstrate the generation of few picosecond short pulses of incoherent light, using the spontaneous emission of switched QD-micropillars. We also show theoretically that cavity switching can be used to shape the time-envelope of single photon pulses emitted by a single QD, which is highly desirable for quantum-optical links and photonic quantum information processing.
30

Optique quantique avec des atomes artificiels semiconducteurs / Quantum Optics with Semiconducting Artificial Atoms

Valente, Daniel 15 October 2012 (has links)
Cette thèse porte sur les effets d'optique quantique avec des atomes artificiels semiconducteurs. Dans un premiers temps, on fait une étude théorique où un émetteur unique est couplé à un guide d'onde unidimensionnel. Ce système permets la propagation libre de la lumière en préservent la sensitivité au niveau d'un photon unique, ce que a motivé des propositions pour faire des portes logiques et des transistors au photon unique. Un schéma pour observer l'émission stimulée au niveau d'un photon unique dans cet environnement unidimensionnel est proposé, en utilisant un émetteur excité (e.g. une boîte quantique) et une pompage classique (laser). On montre que l'émission se produit dans le mode stimulée et que la population atomique fait des oscillations de Rabi classiques. Ensuite, la dynamique complètement quantique est décrite, où un paquet avec un seul photon interagit avec l'atome initialement excité. Dans cette nouvelle condition, la stimulation est irréversible, i.e., les populations atomiques ne réalisent pas des oscillations. Cet effet est optimal dans le cas où le paquet est trois fois plus court qu'un paquet spontanément émis par le même atome. On démontre comment utiliser l'émission stimulée irréversible optimale pour produire des clones quantiques universels. Le même dispositif peut être utilisé aussi bien pour produire des paires des photons complètement intriqués, si le paquet du photon initial est suffisamment étendu. Dans un deuxième moment, nous nous sommes intéressés aussi au spectre d'émission spontanée d'une boîte quantique semiconductrice en couplage faible avec une microcavité. Ce système mets en évidence l'effet d'alimentation de la cavité, où la boîte émet spontanément à la fréquence de la cavité, même si cela est bien désaccordé. L'influence des phonons pour le mécanisme d'alimentation de la cavité est analysée. Une importante distorsion du spectre apparent de la cavité, induit pour la présence des phonons, est démontrée. Les effets étudiés sont topiques et peuvent être implémenté avec des dispositifs semiconducteurs de l'état de l'art. / The thesis focuses on quantum optical effects in semiconducting artificial atoms. We first investigate theoretically a single emitter coupled to a one-dimensional waveguide. This system allows for light propagation while preserving sensitivity at the single-photon level, which has motivated proposals for quantum gates and single-photon transistors. A scheme to monitor stimulated emission at the single-photon level in this one-dimensional open space is proposed, using an excited emitter (e.g. a quantum dot) and a classical pump (laser). We show that light is emitted in the stimulating mode and that the atom performs classical Rabi oscillation. The fully quantum dynamics is also explored, where a single-photon packet interacts with an initially excited emitter. In contrast with the case of a classical pump, stimulation by a single photon is irreversible, i.e., no oscillation takes place. Stimulation is optimal for a packet three times shorter than the spontaneously emitted one. We show how this optimal irreversible stimulated emission can be applied to perform universal quantum cloning. The same device provides either optimal quantum cloning or maximally entangled photon pairs, depending only on the size of the incoming packet. In the second part of the thesis, we investigate the spontaneous emission spectrum of a semiconducting quantum dot weakly coupled to a microcavity. In particular, we address the problem of cavity feeding, where the quantum dot spontaneously emits photons at the frequency of an off-resonance cavity. The influence of phonons in the cavity feeding mechanism is analysed. An important distortion of the apparent cavity peak induced by the presence of phonons is demonstrated. These effects are topical and can be implemented in state-of-the-art semiconducting devices.

Page generated in 0.1047 seconds