Spelling suggestions: "subject:"dictability control"" "subject:"destability control""
1 |
Design, simulation and practical implementation of optimal excitation controllers for synchronous generatorsYoung, Derek W. G. January 1987 (has links)
This thesis describes the design of multivariable excitation controllers for synchronous generators, and their practical implementation on a laboratory machine system. The main objectives of the investigation were aimed at extending the steady-state stability limit of the generator and improving its general controllability. The present work is principally concerned with the implementation and test of the designs. Instrumentation has been developed to measure and combine feedback signals; this instrumentation and the laboratory generator system are described in detail. The performances of the controllers are predicted by computer simulation and evaluated by practical testing; attention is focussed on comparison of predicted and experimental performances. The theoretical basis of the design strategy is described, in which an optimal control algorithm applies the system states as feedback signals to the open-loop system, thereby shifting certain of the system eigenvalues to more desirable, predetermined locations. The state variables are selected as physically measurable quantities which obviates the need for implementing state estimation techniques.
|
2 |
Grip force adjustments in collisionsTurrell, Yvonne January 2000 (has links)
No description available.
|
3 |
Development of a tractor-semitrailer roll stability control modelChandrasekharan, Santhosh 11 December 2007 (has links)
No description available.
|
4 |
Improving the Suction Performance and Stability of an Inducer with an Integrated Inlet Cover Bleed System Known as a Stability Control DeviceLundgreen, Ryan K. 01 August 2015 (has links)
The performance of an inducer with the integration of an inlet cover bleed system known as a stability control device (SCD) is investigated using computational fluid dynamics. Inducers are the first stage of high suction performance pumps and are designed to operate under cavitating conditions. Improvements in design have allowed inducers to operate stably with low inlet head conditions, however, cavitation instabilities ultimately lead to pump failure. It has been shown that inducers that employ an SCD fully suppress cavitation instabilities.The performance of an inducer is explored at both on- and off-design flow coefficients, where the flow coefficient is a normalized flow rate through the inducer. Both the cavitating and non-cavitating performance of the inducer are analyzed. Improved stability is observed when the SCD is implemented, particularly at flow coefficients below the design value. The stabilizing effect of the SCD allows the inducer to operate stably at much lower flow coefficients, which allows for significant improvements in the pumps ability to operate with minimal inlet head. Cavitation instabilities, such as rotating cavitation, are also suppressed when the SCD is implemented.As part of this work, the design space created by the SCD is explored. Variations in the SCD geometry as well as the inlet blade angle of the inducer are explored. High suction performance pumps are required to operate at very low flow coefficients in order to have the best suction performance. Traditionally, only inducers with small inlet blade angles can maintain stable operation at very low flow coefficient. Because of the stabilizing effect of an SCD, inducers with larger inlet blade angles can now operate stably at the low flow rates require for high suction performance pumps. The influence of varying the inlet blade angle is explored in inducers that employ an SCD. This provides a better understanding of the flow physics in inducers that employ an SCD and help to define their design criteria. Stable operation at low flow coefficients is achieved with the larger inlet blade angles, confirming that inducers with larger inlet blade angles that employ an SCD can be used in high suction performance pumps. Modifications to the SCD geometry are considered to better optimize the design. Variations in the SCD geometry have almost no effect on the cavitation breakdown curve for each inducer, however, the stability of the pumps is greatly influenced by the SCD geometry. Some cavitation instabilities are observed in inducers that operate with an SCD. The physics that leads to the generation of these instabilities is unique to an inducer with an SCD. Modifications to the SCD geometry can allow inducers that employ an SCD to suppress traditional cavitation instabilities that occur without an SCD as well as the new instabilities that are observed when an SCD is implemented.
|
5 |
Evaluating the Effectiveness of Electronic Stability Systems in Reducing Truck RolloversDonoughe, Kelly Marie 19 January 2011 (has links)
The objective of this research is to develop a customized hardware-in-the-loop system that is used to test Electronic Stability Program (ESP) systems to prevent heavy truck rollovers when navigating horizontal roadway curves. While most of the published literature on electronic stability control focuses on the effectiveness of stability systems in passenger cars, very few researchers have considered its application as it pertains to commercial vehicles. Detailed crash data that have been extracted from the crashes that are represented in the Large Truck Crash Causation Study database have been used to draw conclusions regarding the main cause of the crashes and the geometry of the road upon which the crashes occurred. Those crash scenarios were run through a hardware-in-the-loop system that communicates between the TruckSim software, a vehicle dynamics based simulation program, and a real-time tractor-trailer braking rig. The simulations were first run without the ESP enabled to determine the critical speed which will cause the truck to roll, then the same simulation runs were executed with the Bendix stability system enabled to determine the difference in speeds in which a rollover is inevitable with and without the technology. A third speed that represents the lowest speed in which the stability system activates was also determined. As requested by the National Highway Traffic Safety Administration (NHTSA), this study also serves as a comparison between the Bendix system and the Meritor WABCO system which has already been tested by the University of Michigan Transportation Research Institute. / Master of Science
|
6 |
A Learning Control, Intervention Strategy for Location-Aware Adaptive Vehicle Dynamics SystemsCho, Sukhwan 03 August 2015 (has links)
The focus of Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) research is to develop a system to avoid situations in which the vehicle exceeds its handling capabilities. The proposed method is predictive, estimating the ability of the vehicle to successfully navigate upcoming terrain, and it is assumed that the future vehicle states and local driving environment is known. An Intervention Strategy must be developed such that the vehicle is navigated successfully along a road via modest changes to the driver's commands and do so in a manner that is in harmony with the driver's intentions and not in a distracting or irritating manner. Clearly this research relies on the numerous new technologies being developed to capture and convey information about the local driving environment (e.g., bank angle, elevation changes, curvature, and friction coefficient) to the vehicle and driver. / Ph. D.
|
7 |
Improvement of Anti-Lock Braking Algorithms Through Parameter Sensitivity Analysis and Implementation of an Intelligent TireCaffee, Joshua Aaron 04 January 2011 (has links)
The contact patch of the tire is responsible for all of the transmission of a vehicle's motion to the road surface. This small area is responsible for the acceleration, stopping and steering control of the vehicle. Throughout the development of vehicle safety and stability control systems, it is desirable to possess the exact forces and moments at the tire contact patch. The tire is a passive element in the system, supplying no explicit information to vehicle control systems. Current safety and stability algorithms use estimated forces at the tire contact patch to develop these control strategies. An "intelligent" tire that is capable of measuring and transmitting the instantaneous forces and moments at the contact patch to the control algorithms in real-time holds promise to improve vehicle safety and performance. Using the force and friction information measured at the contact patch, an anti-lock braking control strategy is developed using sliding mode control. This strategy is compared to the performance of a current commercial anti-lock braking system that has been optimized by performing a threshold sensitivity analysis. The results show a definite improvement in control system strategy having known information at the tire contact patch. / Master of Science
|
8 |
Estimation of vertical load on a tire from contact patch length and its use in vehicle stability controlDhasarathy, Deepak 30 June 2010 (has links)
The vertical load on a moving tire was estimated by using accelerometers attached to the inner liner of a tire. The acceleration signal was processed to obtain the contact patch length created by the tire on the road surface. Then an appropriate equation relating the patch length to the vertical load is used to calculate the load. In order to obtain the needed data, tests were performed on a flat-track test machine at the Goodyear Innovation Center in Akron, Ohio; tests were also conducted on the road using a trailer setup at the Intelligent Transportation Laboratory in Danville, Virginia. During the tests, a number of different loads were applied; the tire-wheel setup was run at different speeds with the tire inflated to two different pressures. Tests were also conducted with a camber applied to the wheel. An algorithm was developed to estimate load using the collected data.
It was then shown how the estimated load could be used in a control algorithm that applies a suitable control input to maintain the yaw stability of a moving vehicle. A two degree of freedom bicycle model was used for developing the control strategy. A linear quadratic regulator (LQR) was designed for the purpose of controlling the yaw rate and maintaining vehicle stability. / Master of Science
|
9 |
Low-Speed Maneuverability, High-Speed Roll-Stability, and Brake Type Performance of Heavy Truck 33-ft Double TrailersNeighborgall, Campbell Reed 02 August 2022 (has links)
This dissertation details the methods and analysis of extensive physical tests and simulation conducted by the Center for Vehicle Systems and Safety (CVeSS) at Virginia Tech on the maneuverability, roll-stability, and brake type performance of 33-ft double trailers. Little literature exists for 33-ft doubles because they are uncommon on the U.S. roads due to current federal restrictions limiting long-combination vehicles to 28-ft doubles. With the continual rise in e-commerce, however, there is a push by package carriers on legislation to permit carriers to introduce 33-ft doubles into their fleets. Three separate studies detailed herein highlight 33-ft double trailers' off-tracking, roll-stability with stability control systems, and brake type influence on braking performance.
The first study compares low-speed off-tracking of a 33-ft double to 28-ft double and 53-ft single configurations via simulation and full-scale tests. Novel numerical tractrix models are introduced and compared to existing models commonly used to evaluate low-speed off-tracking of long combination vehicles (LCVs). Unlike pre-existing models, accuracy of one of the proposed models is largely unaffected by input path resolution and regularity—a significant benefit for reducing computational cost and easing implementation for many applications. Full-scale tests are conducted at Virginia Tech and an extensive uncertainty analysis is detailed for the test procedure and measurements. Field tests compare favorably with simulations for all tested maneuvers and trailer configurations and clearly demonstrate the order from least to most off-tracking as 28-ft double, 33-ft double, and 53-ft single. The 33-ft doubles have slightly larger off-tracking than 28-ft doubles, whereas 53-ft singles have substantially larger off-tracking than 28-ft and 33-ft doubles.
The second study evaluates 33-ft double straight-rail trailers rollover propensity with different stability control system implementations: stock (none), tractor electronic stability control (ESC), trailer roll-stability control (RSC), and RSC+ESC. Extensive test vehicle instrumentation and structural reinforcement are detailed for the test preparations. Tests are conducted on a test track with either driver or robot steering. On their own, both ESC and RSC clearly reduce the rollover propensity of the trailers for all maneuvers, and the trailers exhibit the highest roll-stability when both RSC and ESC are active. The tested ESC and RSC modules are off-the-shelf products from industry suppliers chosen by the program sponsor.
The third study compares trailer drum and disc brake performance in three conditions: straight-line braking distance, brake type influence on RSC performance, and roll dynamics in a combined braking and turning maneuver. A braking robot is designed, fabricated, and implemented to provide precise and repeatable brake pedal application. Test results suggest that disc brakes tend to provide reduced braking distance and are less susceptible to brake fade than drum brakes. Anti-lock braking system (ABS) and suspension dynamics react differently to the two brake types. Small, noticeable differences in RSC performance are evident between the two brake types. Within the test limitations, rollover dynamics were not clearly different between the two brake types for braking-in-turn maneuvers, performed for a large range of entry speeds and brake activation delay relative to the start of steering. / Doctor of Philosophy / Due to their large size, mass, and high center-of-gravity, heavy vehicles, especially long combination vehicles (LCVs) require a substantial amount of space to negotiate turns, long distances to brake from highway speeds to a stop and are susceptible to rollover. Combination vehicles on the U.S. roads are commonly in 53-ft single trailer or 28-ft double trailer configurations. With the continual rise of e-commerce, package carriers are pursuing 33-ft double trailers to increase each vehicle's cargo volume. Before introducing these trailers into a fleet, there is a need to understand (1) if 33-ft doubles can negotiate existing routes traveled by 28-ft double and 53-ft single configurations, (2) if 33-ft doubles can benefit from existing stability control systems, and (3) how trailer brake types perform on 33-ft doubles. Three separate studies are conducted to address these topics. The first study compares off-tracking for the three mentioned trailer configurations through low-speed, real-world maneuvers via physical full-scale tests and simulation. Off-tracking is a metric illustrative of maneuverability and is defined as the relative distance in paths of the rearmost axle to the lead steer axle. New mathematical models are introduced and used to simulate vehicle motion through low-speed maneuvers. The simulation and field tests determine that, for all tested maneuvers, the order from smallest to largest off-tracking is 28-ft double, 33-ft double, and 53-ft single configurations, with the 33-ft doubles having slightly larger off-tracking than 28-ft doubles. This suggests that 33-ft doubles can travel through routes typically traveled by a 53-ft single but need slightly more space on the road than a 28-ft double. The second study tests 33-ft double trailers with and without stability control systems. Tests, conducted at a test track, are designed to replicate real-world maneuvers that induce trailer rollover. It is found that the 33-ft double trailers are clearly less likely to rollover with the tested stability enhancement systems than without. The tests also illustrate that the different tested control systems' effectiveness in reducing rollover propensity is maneuver dependent. The third study tests the braking distance, brake influence on the stability control systems, and rollover dynamics while braking-in-turn for two different types of brakes, drum brakes and disc brakes. Small but evident differences in the performance of the two brake types suggest disc brakes could provide shorter stopping distance and time at highway speeds, compared with drum brakes. The studies detailed in this dissertation provide valuable information on 33-ft doubles dynamics and provide guidance for their safe introduction on the U.S. roadways.
|
10 |
PRODUCTION SEQUENCING AND STABILITY ANALYSIS OF A JUST-IN-TIME SYSTEM WITH SEQUENCE DEPENDENT SETUPSHenninger, John Thomas 01 January 2009 (has links)
Just-In-Time (JIT) production systems is a popular area for researchers but real-world issues such as sequence dependent setups are often overlooked. This research investigates an approach for determining stability and an approach for mixed product sequencing in production systems with sequence dependent setups and buffer thresholds which signal replenishment of a given buffer. Production systems in this research operate under JIT pull production principles by producing only when demand exists and idle when no demand exists.
In the first approach, an iterative method is presented to determine stability for a multi-product production system that operates with replenishment signals and may have sequence dependent setups. In this method, a network of nodes representing machine states and arcs representing the buffer inventory levels is used to find a stable trajectory for the production system via an iterative procedure. The method determines suitable buffer levels for the production system that ensure that a trajectory originating from any point within a buffer region will always map to a point contained on another buffer region for all future mappings.
This iterative method for determining the stability of a production system was implemented using an algorithm to calculate the buffer inventory regions for all arcs in a given arc-node network. The algorithm showed favorable results for two and three product systems in which sequence dependent setups may exist.
In the second approach, a product sequencing algorithm determines a product sequence for a production system based on system parameters – setup times, buffer levels, usage rates, production rates, etc. The algorithm selects a product by evaluating the goodness of each product that has reached the replenishment threshold at the current time. The algorithm also incorporates a lookahead function that calculates the goodness for some time interval into the future. The lookahead function considers all branches of the tree of potential sequences to prevent the sequence from travelling down a dead-end branch in which the system will be unable to avoid a depleted buffer. The sequencing algorithm allows the user to weight the five terms of the goodness equations (current and lookahead) to control the behavior of the sequence.
|
Page generated in 0.0829 seconds