Spelling suggestions: "subject:"captable rank"" "subject:"cantable rank""
1 |
Tracial State Spaces of Higher Stable Rank Simple C*-algebrasMortari, Fernando 02 March 2010 (has links)
Ten years ago, J. Villadsen constructed the first examples of simple C*-algebras with stable rank other than one or infinity. Villadsen's examples all had a unique tracial state.
It is natural to ask whether examples can be found of simple C*-algebras with higher stable rank and more than one tracial state; by building on Villadsen's construction, we describe such examples that admit arbitrary tracial state spaces.
|
2 |
Tracial State Spaces of Higher Stable Rank Simple C*-algebrasMortari, Fernando 02 March 2010 (has links)
Ten years ago, J. Villadsen constructed the first examples of simple C*-algebras with stable rank other than one or infinity. Villadsen's examples all had a unique tracial state.
It is natural to ask whether examples can be found of simple C*-algebras with higher stable rank and more than one tracial state; by building on Villadsen's construction, we describe such examples that admit arbitrary tracial state spaces.
|
3 |
Dimensions and Integral ExtensionsTsai, Chung-Wen 28 July 2004 (has links)
Recently, Dawson and Feinstein showed that a Banach algebra integral extension B of a commutative
Banach algebra A of topological stable rank one is again of topological stable rank
one. In this thesis, we provide a partial converse to this statement: If an Arens-Hoffman extension
A® of a commutative C*-algebra A has topological stable rank one then A has topological
stable rank one.
|
4 |
Crossed product C*-algebras by finite group actions with a generalized tracial Rokhlin propertyArchey, Dawn Elizabeth, 1979- 06 1900 (has links)
viii, 107 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / This dissertation consists of two related parts. In the first portion we use the tracial Rokhlin property for actions of a finite group G on stably finite simple unital C *-algebras containing enough projections. The main results of this part of the dissertation are as follows. Let A be a stably finite simple unital C *-algebra and suppose a is an action of a finite group G with the tracial Rokhlin property. Suppose A has real rank zero, stable rank one, and suppose the order on projections over A is determined by traces. Then the crossed product algebra C * ( G, A, à à ±) also has these three properties.
In the second portion of the dissertation we introduce an analogue of the tracial Rokhlin property for C *-algebras which may not have any nontrivial projections called the projection free tracial Rokhlin property . Using this we show that under certain conditions if A is an infinite dimensional simple unital C *-algebra with stable rank one and à à ± is an action of a finite group G with the projection free tracial Rokhlin property, then C * ( G, A, à à ±) also has stable rank one. / Adviser: Phillips, N. Christopher
|
5 |
An investigation of average stable ranks : On plane geometric objects and financial transaction data / En undersökning av den genomsnittliga stabila rangen hos plana geometriska figurer och finansiella transaktionerOdelius, Linn January 2020 (has links)
This thesis concerns the topological features of plane geometric shapes and financial transaction data. Topological properties of the data such as homology groups and their stable ranks are analysed. It is investigated how to mathematically describe differences between data sets and it is found that stable ranks can be used to capture these differences. Sub sampling is introduced as a way to apply stochastic methods to geometric structures. It is found that the average stable rank can be used to differentiate data sets. Furthermore, the sensitivity of average stable ranks to random noise is explored and it is studied how a single point changes the average stable ranks of geometric shapes and financial transaction data. A method to incorporate categorical data within the analysis is introduced. The theory is applied to financial transaction data with the objective to understand if there are topological differences between fraudulent and legit transactions which can be used to classify them. / I denna uppsats analyseras finansiell transaktionsdata samt plana geometriska objekt med hjälp av verktyg inom Topologisk Dataanalys. Topologiska egenskaper såsom homologi samt stabil rang analyseras och det undersöks hur en matematiskt kan beskriva skillnaden mellan geometriska objekt. Det visar sig att simplistiska komplex och dess motsvarande stabila rang kan användas för att beskriva dessa skillnader. Det undersöks även hur stokastiska metoder kan appliceras på geometrisk data och begreppet genomsnittlig stabil rang introduceras. Känsligheten för brus hos den genomsnittliga stabila rangen undersöks för plana objekt och det undersöks hur den genomsnittliga stabila rangen av en datamängd ändras om en datapunkt läggs till. En metod för att beskriva avstånd på kategorisk data introduceras eftersom analysen av stabil rang kräver ett definierat avstånd mellan datapunkter. Det undersöks huruvida det finns topologiska skillnader mellan bedrägliga och icke-bedrägliga transaktioner, samt om det finns skillnader mellan olika typer av bedrägliga transaktioner.
|
6 |
Exploring persistent homology as a method for capturing functional connectivity differences in Parkinson’s Disease. / Utforskning av ihållande homologi som en metod för att fånga skillnader i funktionell konnektivitet hos Parkinsons sjukdom.Hulst, Naomi January 2022 (has links)
Parkinson’s Disease (PD) is the fastest growing neurodegenerative disease, currently affecting two to three percent of the population over 65. Studying functional connectivity (FC) in PD patients may provide new insights into how the disease alters brain organization in different subjects. We explored persistent homology (PH) as a method for studying FC based on the functional magnetic resonance imaging (fMRI) recordings of 63 subjects, of which 56 were diagnosed with PD. We used PH to translate each set of fMRI recordings into a stable rank. Stable ranks are homological invariants that are amenable for statistical analysis. The pipeline has multiple parameters, and we explored the effect of these parameters on the shape of the stable ranks. Moreover, we fitted functions to reduce the stable ranks to points in two or three dimensions. We clustered the stable ranks based on the fitted parameter values and based on the integral distance between them. For some of the parameter combinations, not all clusters were located in the space covered by controls. These clusters correspond to patients with a topologically distinct connectivity structure, which may be clinically relevant. However, we found no relation between the clusters and the medication status or cognitive ability of the patients. It should be noted that this study was an exploration of applying persistent homology to PD data, and that statistical testing was not performed. Consequently, the presented results should be considered with care. Furthermore, we did not explore the full parameter space, as time was limited and the data set was small. In a follow-up study, a measurable desired outcome of the pipeline should be defined and the data set should be expanded to allow for optimizing over the full parameter space. / Parkinsons sjukdom är den snabbast växande neurodegenerativa sjukdomen och drabbar för närvarande två till tre procent av befolkningen över 65 år. Att studera funktionell konnektivitet (FC) hos patienter med Parkinson kan ge nya insikter om hur sjukdomen förändrar hjärnans uppsättning i olika områden. Vi använde oss av persistent homologi (PH) som en metod för att studera FC baserat på inspelningar av funktionell magnetresonanstomografi (fMRI) av 63 försökspersoner varav 56 hade diagnosen PD. Vi använde oss av persistent homologi (PH) som en metod för att studera FC baserat på inspelningar av funktionell magnetresonanstomografi (fMRI) av 63 försökspersoner varav 56 hade diagnosen PD. Vi använde PH för att översätta varje uppsättning fMRI-prov vardera till en stable rank. Stable ranks är homologiska invarianter som är lämpliga för statistisk analys. Pipelinen har flera parametrar och vi undersökte effekten av dessa parametrar på formen av dessa stable ranks. Vi anpassade funktioner för att reducera alla stable ranks till punkter i två eller tre dimensioner. Vi grupperade alla stable ranks utifrån de anpassade parametervärdena och utifrån det integrala avståndet mellan dem. För vissa parameterkombinationer kunde inte alla kluster inom det område som täcks av kontrollerna bli funna. Dessa kluster motsvarar patienter med en topologiskt distinkt konnektivitetsstruktur, vilket kan vara kliniskt relevant. Vi fann dock inget samband mellan klustren och patienternas läkemedelsstatus eller kognitiva förmåga. Det bör noteras att den här studien var en undersökning på tillämpningen av persistent homologi på PD-data och att statistiska tester inte utfördes. Följaktligen bör de presenterade resultaten betraktas med försiktighet. Dessutom undersökte vi inte hela parameterutrymmet eftersom tiden var begränsad och datamängden liten. I en uppföljningsstudie bör man definiera ett mätbart önskat resultat av pipelinen och datamängden bör utökas för att möjliggöra optimering av hela parameterutrymmet.
|
Page generated in 0.0655 seconds