Spelling suggestions: "subject:"stacked"" "subject:"tacked""
51 |
Two-Dimensional Analysis of Stacked Geosynthetic TubesKlusman, Craig Raymond 10 July 1998 (has links)
Geosynthetic tubes filled with a slurry-mix are considered. The mix is usually dredged from a nearby area and pumped directly into the tubes. The tubes are used in a variety of applications including breakwaters, groins, and temporary levees. This thesis considers single and stacked geosynthetic tubes resting on rigid and deformable foundations.
A two-dimensional analysis is performed on the cross-section of a very long tube. The program Mathematica is utilized for the analysis. A few assumptions are made regarding the general behavior of the tube. The tube is assumed to be an inextensible membrane with no bending stiffness. To allow for a closed-form integral solution, it is assumed that no friction exists between the tubes and at the foundation.
A single tube, two stacked tubes, and a 2-1 formation are studied. Both rigid and deformable foundations are considered. The deformable foundation is modeled as a tensionless Winkler foundation with normal forces proportional to the downward deflection of the ground. An external water load on one side is also investigated for a single tube and a 2-1 formation, with rigid blocks to prevent the structure from sliding along the ground. Example cross-sectional profiles are given. Results from the analysis include structure height, circumferential tension, and ground deflections. / Master of Science
|
52 |
Radioactive ion implantation of thermoplastic elastomersBorcea, Veronica 11 September 2008 (has links)
The radioactive ion implantation wear measuring method (RII) has been used for many years as a tool to make highly sensitive real-time in-situ measurements of wear and corrosion in metallic or ceramic materials. The method consists of the controlled implantation of radioactive ions of limited decay time in a thin layer at the surface of the material. The progressive abrasion of the material results in a decline in radioactivity which is followed to monitor material losses.
The application of RII to control the wear of polymers is potentially of interest, but it has been lagging behind because of uncertainties related to possible changes in material properties during and after the implantation, and to the exact shape of implantation profiles. In this thesis, we investigate these issues on two thermoplastic elastomers typically used for making the soles of sport shoes, among which one contains radiation-sensitive unsaturated bonds, using as ions 7Be, 7Li and Kr. The results of the sample characterisation indicate that the 7Be and 7Li implantations, under properly-selected conditions, do not induce significant modifications in the materials. The implantation of a stack of polymer thin films and the activity measurements performed to determine the implantation profile are also presented. The experimental results on the ion implantation profiles and the determination of calibration curves are presented and discussed in comparison with simulated results. The results indicate that it is possible to predict the implantation profile by means of simulations. This bodes well for the application of the RII method to polymer materials.
In the last part, an experimental study is presented regarding the possible redistribution of the implanted 7Be after implantation. Since very few existing experimental techniques are able to detect light elements implanted in polymer targets at fluences less or equal to 1012 cm-2, with implantation depths of a few µm, a new method is presented, which implies the use of plasma etching techniques in order to remove layers of polymers and measuring the remaining activity after each step. Our results indicate that a redistribution of the implanted ions takes place during the implantation process, resulting in a scrambling of the initial implantation profile. Nevertheless, provided a suitable methodology be used, wear measurements in polymers by using the RII method are still possible, as we propose in the thesis.
|
53 |
Integrated Compact Drives for Electric and Hybrid Electric VehiclesJin, Lebing January 2016 (has links)
To develop more competitive solutions, one of the trends in the development of drive systems for electric and hybrid electric vehicles (EVs/HEVs) is to integrate the power electronic converter and the electric motor. This thesis aims to investigate the performance and the operation of modular converters in integrated motor drive systems for EVs/HEVs. In the first part, the concept of integrated modular motor drive systems for EVs/HEVs is introduced. Three suitable modular converter topologies, namely, the stacked polyphase bridges (SPB) converter, the parallel-connected polyphase bridges (PPB) converter and the modular high frequency (MHF) converter, are evaluated and compared with conventional electric drives in terms of power losses, energy storage requirements, and semiconductor costs. In the second part of the thesis, the harmonic content of the dc-link current of the SPB converter is analyzed. By adopting an interleaving modulation the size of the dc-link capacitor can be reduced without increasing the switching frequency, which is beneficial for achieving a compact integrated system. This method allows for around 80% reduction of the dc-link capacitance for vehicle drives, resulting in a significant size reduction of the power converter and improved integration. Finally, a communication-based distributed control system for the SPB converter is presented. The communication delay arising from the serial communication is inevitable, thus a timing analysis is also presented. It has been found that stability is maintained even when the baud rate of the SPI communication is lower than 1 Mbps, indicating that other communication protocols with lower bandwidths can also be adopted for this topology. The analytical investigations provided in this thesis are validated by experiments on a four-submodule laboratory prototype. Experimental results verify the correctness of the theoretical analysis, as well as the dynamic performance of the distributed control system. / <p>QC 20161121</p>
|
54 |
Graphene oxide sheets confined within anisotropic fluid matrices / Confinement de feuillets de graphène oxydé dans une matrice fluide anisotrope / Confinamento de folhas de grafeno oxidado em uma matriz fluida anisotrópicaLeite Rubim, Rafael 12 November 2018 (has links)
Dès sa découverte, le graphène oxydé (GO), le plus accessible des précurseurs du graphène, a été largement utilisé pour des applications en science et technologie. La motivation de ce travail est d'étudier, d'un point de vue fondamental, le couplage entre des bicouches amphiphiles auto-associées (lesquelles peuvent être vues comme une matrice anisotrope formée d'objets bidimensionnels) et un objet lui-même bidimensionnel, en l'occurrence le feuillet de graphène oxydé, quand ils sont dispersés dans un solvant commun. La compétition entre les élasticités intrinsèques des bicouches et des feuillets de GO, ainsi que les interactions directes bicouche-bicouche, bicouche-GO et GO-GO, permet d'envisager un riche polymorphisme en fonction de la composition du système. Après avoir développé une procédure destinée à contrôler, dans une gamme étendue de teneur en GO, le système binaire GO-eau, le domaine confiné des dispersions aqueuses de GO a été exploré et, par la suite, le diagramme de phases ternaire a été construit. Les systèmes obtenus ont été caractérisés par des techniques comme la microscopie optique et la diffusion du rayonnement (diffusion dynamique de la lumière et diffusion des rayons-X aux petits angles). Les propriétés élastiques et thermodynamiques ont été décrites par l'application de modèles initialement conçus pour les phases lamellaires à deux constituants et adaptés dans le cadre de cette étude. / Since the discovery of graphene oxide (GO), the most accessible of the precursors of graphene, this material has been widely studied for applications in science and technology. The motivation of this work is to study with a fundamental perspective the coupling between amphiphilic bilayers, which can be seen as an anisotropic matrix formed of two-dimensional objects, and another two-dimensional object, namely the graphene oxide sheet when they are dispersed in a common solvent. The competition between the intrinsic elasticities of the bilayers and GO sheets, as well as between direct bilayer-bilayer, bilayer-GO and GO-GO interactions allows us to envisage a rich polymorphism, depending on the composition of the system. Following the development of a dedicated procedure for controlling in an extended range of GO content the binary GO-water system, the confined domain of aqueous GO dispersions was first investigated, and the ternary phase diagram then constructed. The obtained systems have been characterised, using techniques such as optical microscopy, light and x-ray scattering. Elastic and thermodynamic properties have been described by applying, and adapting to the scope of this study, models for two-component lamellar stacks. / Desde sua descoberta, o grafeno oxidado (GO), o mais acessível dos precursores do grafeno,tem sido amplamente utilizado para aplicações na ciéncia e tecnologia. A motivação destetrabalho é de estudar, de um ponto de vista fundamental, o acoplamento entre bicamadas anfifílicas auto-organizadas (que podem ser vistas como uma matriz anisotrópica formada por objetos bidimensionais) e um objeto ele mesmo bidimensional, neste caso a folha de óxido de grafeno, quando estão dispersados em um solvente comum.A competição entre as elasticidades intrínsecas das bicamas e das folhas de GO, assimcomo as interaçãoes diretas bicamada-bicamada, bicamada-GO e GO-GO, permitem esperar um rico polimorfismo em função da composição do sistema. Seguindo o desenvolvimento de um procedimento destinado ao controle, em um intervalo extendido da quantidade de GO, o sistema binário GO-água, o domínio confinado de dispersões aquosas de GO foi explorado e, em seguida, o diagrama de fases ternário contruído.Os sistemas obtidos foram caracterizados por t_ecnicas como microscopia ótica, espalhamento dinâmico de luz e espalhamento de raios-x à baixos ângulos. As propriedadeselásticas e termodinâmicas foram descritas pela aplicação de modelos inicialmente concebidos para fases lamelares à dois constituintes e adaptados ao escopo deste estudo.
|
55 |
Conception en vue du Test des Circuits Intégrés 3D à base de TSVs / Design for Test of TSV Based 3D Stacked Integrated CircuitsFkih, Yassine 14 November 2014 (has links)
Depuis plusieurs années, la complexité des circuits intégrés ne cesse d'augmenter : du SOC (System On Chip) vers le SIP (System In Package), et plus récemment les circuits empilés en 3D : les 3D SIC (Stacked Integrated Circuits) à base de TSVs (Through Silicon Vias) interconnectant verticalement les tiers, ou puces, du système. Les 3D SIC présentent de nombreux avantages en termes de facteur de forme, de performance et de consommation mais demandent aussi de relever de nombreux défis en ce qui concerne leur test, étape nécessaire avant la mise en service de ces systèmes complexes. Dans cette thèse, nous nous attachons à définir les infrastructures de test qui permettront de détecter les éventuels défauts apparaissant lors de la fabrication des TSVs ou des différentes puces du système. Nous proposons une solution de BIST (Built In Self Test) pour le test avant empilement des TSVs. Cette solution est basée sur l'utilisation d'oscillateurs en anneaux dont la fréquence d'oscillation dépend des caractéristiques électriques des TSVs. La solution de test proposée permet non seulement la détection de TSVs fautifs mais aussi de renseigner sur le nombre d'éléments défectueux et leur identification. D'autre part, nous proposons une architecture de test 3D basée sur la nouvelle proposition de norme IEEE P1687. Cette infrastructure permet de donner accès aux composants du système 3D avant et après empilement. Elle permet d'autre part de profiter du recyclage des données de test développées et appliquées avant empilement pour chacun des tiers puis ré-appliqués durant ou après l'empilement. Ces travaux aboutissent finalement à l'ouverture d'une nouvelle problématique liée à l'ordonnancement des tests sous contraintes (puissance consommée, température).Mots-clés : test, circuits 3D, TSV, BIST, oscillateur en anneau, architecture de test 3D, IEEE P1687, test avant empilement, test après empilement. / For several years, the complexity of integrated circuits continues to increase, from SOC (System On Chip) to SIP (System In Package) , and more recently 3D SICs (Stacked Integrated Circuits) based on TSVs (Through Silicon Vias ) that vertically interconnect stacked circuits in a 3D system. 3D SICs have many advantages in terms of small form factor, high performances and low power consumption but have many challenges regarding their test which is a necessary step before the commissioning of these complex systems. In this thesis we focus on defining the test infrastructure that will detect any occurring defects during the manufacturing process of TSVs or the different sacked chips in the system. We propose a BIST (Built In Self Test) solution for TSVs testing before stacking, this solution is based on the use of ring oscillators which their oscillation frequencies depend on the electrical characteristics of the TSVs. The proposed test solution not only allows the detection of faulty TSVs but also gives information about the number of defective TSVs and their location. On the other hand, we propose a 3D DFT (Design For Test) architecture based on the new proposed test standard IEEE P1687. The proposed test architecture provides test access to the components of the 3D system before and after stacking. Also it allows the re-use of recycled test data developed and applied before stacking to each die in the mid-bond and post-bond test levels. This work lead to the opening of a new problem related to the test scheduling under constraints such as: power consumption, temperature.Keywords: test, 3D circuits, TSV, BIST, ring oscillators, 3D DFT architecture, IEEE P1687, pre-bond test, post-bond test.
|
56 |
Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas. / On central configurations of the n body problem. Planar, Spatial and Stacked central configurations.Antonio Carlos Fernandes 23 November 2011 (has links)
No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central. / In this work we present some aspects of the Newtonian n--body problem. We study the case of two bodies, which have a straightforward solution, although we can not get all the variables as functions of the time. For n greater or equal to 3 we show that there is no method to integrate this problem by quadratures. We can have just some information about the general case, as the Lagrange-Jacobi\'s Identity the Sundman-Weierstrass\'s theorem and others. We will see some cases of particular solutions, which will be called homographic solutions. In these solutions the geometric shape of initial configuration of the bodies is preserved during the movement. We will see necessary conditions on the initial positions that turn possible to obtain these solutions. We show a relation between these particular solutions and critical points of an application, that associate the total energy and total angular momentum of the system. In these several cases, we will fall in same algebraic equation, which we called of the central configurations equations. We show that the central configurations equations are equivalent to another set of algebraic equations, which are also used to compute the central configurations, but with these equations the symmetries of the problem become clearer. We will make some direct applications these algebraic equations. An interesting subclass of the class of central configurations are called stacked differential equations, in which a proper subset of the bodies form a central configuration too. In the last two chapters we will see some examples of central configurations of this kind, especially those where we can remove a mass and still have a central configuration.
|
57 |
Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas. / On central configurations of the n body problem. Planar, Spatial and Stacked central configurations.Fernandes, Antonio Carlos 23 November 2011 (has links)
No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central. / In this work we present some aspects of the Newtonian n--body problem. We study the case of two bodies, which have a straightforward solution, although we can not get all the variables as functions of the time. For n greater or equal to 3 we show that there is no method to integrate this problem by quadratures. We can have just some information about the general case, as the Lagrange-Jacobi\'s Identity the Sundman-Weierstrass\'s theorem and others. We will see some cases of particular solutions, which will be called homographic solutions. In these solutions the geometric shape of initial configuration of the bodies is preserved during the movement. We will see necessary conditions on the initial positions that turn possible to obtain these solutions. We show a relation between these particular solutions and critical points of an application, that associate the total energy and total angular momentum of the system. In these several cases, we will fall in same algebraic equation, which we called of the central configurations equations. We show that the central configurations equations are equivalent to another set of algebraic equations, which are also used to compute the central configurations, but with these equations the symmetries of the problem become clearer. We will make some direct applications these algebraic equations. An interesting subclass of the class of central configurations are called stacked differential equations, in which a proper subset of the bodies form a central configuration too. In the last two chapters we will see some examples of central configurations of this kind, especially those where we can remove a mass and still have a central configuration.
|
58 |
A study of methods for fine-grained object classification of arthropod specimensLin, Junyuan 18 February 2013 (has links)
Object categorization is one of the fundamental topics in computer vision research. Most current work in object categorization aims to discriminate among generic object classes with gross differences. However, many applications require much finer distinctions. This thesis focuses on the design, evaluation and analysis of learning algorithms for fine- grained object classification. The contributions of the thesis are three-fold. First, we introduce two databases of high-resolution images of arthropod specimens we collected to promote the development of highly accurate fine-grained recognition methods. Second, we give a literature review on the development of Bag-of-words (BOW) approaches to image classification and present the stacked evidence tree approach we developed for the fine-grained classification task. We draw connections and analyze differences between those two genres of approaches, which leads to a better understanding about the design of image classification approaches. Third, benchmark results on our two datasets are pre- sented. We further analyze the influence of two important variables on the performance of fine-grained classification. The experiments corroborate our hypotheses that a) high resolution images and b) more aggressive information extraction, such as finer descriptor encoding with large dictionaries or classifiers based on raw descriptors, is required to achieve good fine-grained categorization accuracy. / Graduation date: 2013
|
59 |
Thermal Issues in Testing of Advanced Systems on ChipAghaee Ghaleshahi, Nima January 2015 (has links)
Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.
|
60 |
Circuit techniques for the design of power-efficient radio receiversGhosh, Diptendu 02 August 2011 (has links)
The demand for low power wireless transceiver implementations has
been fueled by multiple applications in the recent decades, including cellular
systems, wireless local area networks, personal area networks, biotelemetry and sensor networks. Dynamic range, which is set by linearity and sensitivity performance, is a critical design metric in many of these systems. Both linearity and sensitivity requirements continue to become progressively challenging in
many systems due to greater spectrum usage and the need for high data rates respectively. The objective of this research is to investigate power-efficient
circuit techniques for reducing the power requirement in receiver front-ends without compromising the dynamic range performance.
In the first part of the dissertation, a low power receiver down-converter topology for enhancing dynamic range performance is presented. Current
mode down-converters with passive mixer cores have been shown to provide excellent dynamic range performance. However, in contrast to a current commutating
Gilbert cell, these down-converters require separate bias current paths for the RF transconductor and the baseband transimpedance amplifier.
The proposed topology reduces the power requirement of conventional
current mode passive down-converter by sharing the bias current between the transconductance and transimpedance stages. This is achieved without compromising
the available voltage headroom for either stage, which is a limitation
of bias-sharing based on the use of stacked stages. The dynamic range of the basic bias-current-shared topology is further enhanced through suppression of
low frequency noise and IM3 products. Two variants of the down-converter, employing a broadband common-gate and a narrowband common-source input stage, are implemented in a 0.18-μm CMOS technology. The dynamic range performance of the architecture is analyzed. Finally, a prototype of a
full direct-conversion receiver implementation with quadrature outputs and integrated LO synthesis is demonstrated.
A power-efficient oscillator design for phase noise minimization is presented
in the second part of this dissertation. This design is targeted towards multi-radio platforms where several communication links operate simultaneously over multiple frequency bands. Blockers from concurrently operating radios present a major design challenge. The blockers not only make the frontend linearity requirement more stringent but also degrade receiver sensitivity through reciprocal mixing with the phase noise sidebands of LO. Phase noise
minimization is thus critical for ensuring high sensitivity in frequency bands where large blockers are present and not sufficiently attenuated by pre-select filters.
A capacitive power combining technique in oscillators is introduced to improve phase noise performance. By combining this approach with current reuse,
the phase noise is reduced at lower power, compared to conventional LC oscillators. This leads to improved power efficiency. Moreover, the technique
mitigates modeling uncertainty arising from phase noise reduction through simultaneous impedance and current scaling. The mode selection in this oscillator,
which employs multiple coupled resonators, is analyzed and the impact of coupling on far-out phase noise performance is discussed.
Multi-mode oscillation can potentially arise in other oscillator topologies too, e.g., in multiphase oscillators. Mode selection in a widely used
transistor-coupled quadrature oscillator is analyzed in detail in the final part of the dissertation. The analysis shows how cross-compression among multiple competing modes can lead to suppression of non-dominant modes in the steady state. / text
|
Page generated in 0.044 seconds