• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 26
  • 19
  • 16
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY

Harris, William E., Ciccone, Stephanie M., Eadie, Gwendolyn M., Gnedin, Oleg Y., Geisler, Douglas, Rothberg, Barry, Bailin, Jeremy 20 January 2017 (has links)
We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by similar or equal to 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] similar or equal to-2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R >= 4 R-eff, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
12

The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds

Bitsakis, Theodoros, González-Lópezlira, R. A., Bonfini, P., Bruzual, G., Maravelias, G., Zaritsky, D., Charlot, S., Ramírez-Siordia, V. H. 26 January 2018 (has links)
We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis et al. Our code detects 1319 star clusters in the central 18 deg(2) of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (<= 50 Myr) clusters in both Magellanic Clouds, found where their bars join the H I arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.
13

A Novel Method to Automatically Detect and Measure the Ages of Star Clusters in Nearby Galaxies: Application to the Large Magellanic Cloud

Bitsakis, T., Bonfini, P., González-Lópezlira, R. A., Ramírez-Siordia, V. H., Bruzual, G., Charlot, S., Maravelias, G., Zaritsky, D. 11 August 2017 (has links)
We present our new, fully automated method to detect and measure the ages of star clusters in nearby galaxies, where individual stars can be resolved. The method relies purely on statistical analysis of observations and Monte-Carlo simulations to define stellar overdensities in the data. It decontaminates the cluster color-magnitude diagrams and, using a revised version of the Bayesian isochrone fitting code of Ramirez-Siordia et al., estimates the ages of the clusters. Comparisons of our estimates with those from other surveys show the superiority of our method to extract and measure the ages of star clusters, even in the most crowded fields. An application of our method is shown for the high-resolution, multiband imaging of the Large Magellanic Cloud. We detect 4850 clusters in the 7 deg(2) we surveyed, 3451 of which have not been reported before. Our findings suggest multiple epochs of star cluster formation, with the most probable occurring similar to 310 Myr ago. Several of these events are consistent with the epochs of the interactions among the Large and Small Magellanic Clouds, and the Galaxy, as predicted by N-body numerical simulations. Finally, the spatially resolved star cluster formation history may suggest an inside-out cluster formation scenario throughout the LMC, for the past 1 Gyr.
14

Globular Cluster System Properties by Host Galaxy Environment

Hartman, Kate January 2022 (has links)
I present Hubble Space Telescope photometry in optical (F475X, 475 nm) and near-infrared (F110W, 1.1 μm) bands of the globular cluster (GC) system of the inner haloes of a sample of 15 brightest cluster galaxies (BCGs). I also present a quantitative model of the relation between (F475X - F110W) colour and cluster metallicity, using simulated GCs. The sample comprises massive elliptical galaxies in a range of environments, from sparsely populated groups to dense clusters. Because the material available for large galaxies to accrete varies with environment and GC systems of such galaxies are built up through accretion, I expect the metallicity distribution of the GC systems in my sample to vary with galaxy environment. GC systems in massive elliptical galaxies tend to follow a bimodal colour distribution, with two subpopulations of blue (metal-poor) and red (metal-rich) clusters. The photometry is used to create a completeness-corrected metallicity histogram for each galaxy in my sample, and to fit a double Gaussian curve to each histogram in order to model the two subpopulations. Finally, the properties of the GC metallicity distribution are correlated against each BCG environment. I found that almost no GCS properties and host galaxy environmental properties are correlated, with the exception of weak but consistent correlations between number of GCs and nth-nearest neighbour surface density and between blue fraction and nth-nearest neighbour surface density. / Thesis / Master of Science (MSc)
15

The Effects of Radiative Feedback on Star Cluster Formation and the Galactic Interstellar Medium

Howard, Corey 11 1900 (has links)
The majority of stars form in clusters which are themselves birthed in Giant Molecular Clouds (GMCs). The radiation produced by clusters during their formative phase heats and ionizes the surrounding gas and drives outflows via radiation pressure. The combination of these processes, referred to as radiative feedback, is a proposed mechanism for limiting the star formation efficiency (SFE) in molecular clouds. In this thesis, we use 3D numerical simulations of turbulent GMCs, completed using the code FLASH and a sophisticated radiative transfer scheme, to explore the effects of radiative feedback on cluster formation and the larger scale interstellar medium (ISM). We present suites of simulations that vary the initial GMC mass from 10^4 to 10^6 M$_{\odot}$ and consider both gravitationally bound and unbound clouds. We find that clusters form within the highly filamentary clouds where they can undergo subsequent merging. Radiative feedback only plays a minor role in lowering the SFE of 10^6 M$_{\odot}$ GMCs. However, it completely disrupts intermediate mass clouds (~10^5 M$_{\odot}$), reducing the SFE by a factor of two. We then examine the escape fraction of UV photons from GMCs --- a quantity relevant to the structure of the ISM and cosmic reionization. We show that the escape fraction is dynamic and can vary by factors of two over short timescales because of the rapid growth and collapse of HII regions. The escape fractions from massive GMCs are typically low (~5%) while intermediate mass models are characterized by escape fractions nearing 100%. We combine our GMC models to represent the escape fraction from a population of clouds in dwarf starburst and spiral-type galaxies. We successfully reproduce the star formation rates in these galaxies and find typical escape fractions of 8% in all cases. These results place important constraints on galactic-scale models studying the ISM and cosmic reionization. / Thesis / Doctor of Philosophy (PhD)
16

Star Clusters in the M31 Galaxy Southwest Field. Photometric Survey and Population Properties / Žvaigždžių spiečiai M31 galaktikos pietvakarinėje dalyje. Fotometrinė apžvalga ir populiacijos savybės

Narbutis, Donatas 30 December 2010 (has links)
Observational evidence that star formation proceeds in a clustered manner raises a question on the mass function of star clusters and their evolution. However, we have a limited scope of these processes in the Milky Way galaxy. The M31 galaxy is the nearest stellar system similar to our Galaxy, therefore, it is the most suitable one to provide clues for understanding the star cluster population and the evolution of galactic structures. However, detailed study of stellar populations and star clusters is a challenging task for ground-based observations due to crowded stellar fields. Using Subaru telescope Suprime-Cam wide-field images, a survey of clusters was carried out in the disk region of the M31 galaxy southwest field, which is a close analogue to that of the Solar neighborhood in terms of chemical composition, stellar density, and quiescent star formation. Data analysis methods and programs were developed, tested, and applied for crowded wide-field image reduction and evolutionary parameter determination of semi-resolved star clusters. The main results are: (1) enhanced star cluster formation activity in M31 occurred ~70 Myr ago; (2) approximately 10% of stars born in star clusters remain there at 100 Myr age; (3) the characteristic lifetime of a cluster of ~10^4 solar masses mass is ~300 Myr; (4) the mass function of star clusters in M31 is similar to that in other low star formation activity galaxies and it is best described by the Schechter's function with a... [to full text] / Daugėjant įrodymų, kad žvaigždės formuojasi spiečiais, jų masių funkcijos ir evoliucijos savybes kol kas galima nustatyti empiriniais stebėjimais. Tačiau tirti žvaigždėdaros procesą mūsų Galaktikoje galima ribotai. Andromedos galaktika (M31) yra artimiausia žvaigždžių sistema, panaši į Galaktiką. Todėl ji tinkamiausia žvaigždžių spiečių populiacijai tirti, tačiau ilgą laiką buvo tirta ribotai dėl tankių žvaigždžių laukų stebėjimo sudėtingumo. Naudojant „Subaru“ teleskopo Suprime-Cam plataus lauko nuotraukas, buvo ištirti žvaigždžių spiečiai M31 galaktikos disko srityje, kuri pagal cheminę sudėtį, žvaigždinį tankį ir mažą žvaigždėdaros spartą yra analogiška Saulės aplinkai mūsų Galaktikoje. Buvo sukurti, išbandyti ir pritaikyti duomenų analizės metodai ir programos tankiems plataus lauko vaizdams apdoroti ir pusiau išskiriamų žvaigždžių spiečių evoliuciniams parametrams nustatyti. Pagrindiniai rezultatai: (1) žvaigždžių spiečių formavimosi spartos sustiprėjimas M31 galaktikoje įvyko prieš ~70 mln. m.; (2) maždaug 10% žvaigždžių spiečių gyvena ilgiau nei 100 mln. m.; (3) būdingoji ~10^4 Saulės masių spiečiaus gyvavimo trukmė yra ~300 mln. m.; (4) žvaigždžių spiečių masių pasiskirstymas panašus į kitų mažos žvaigždėdaros spartos galaktikų žvaigždžių spiečių pasiskirstymą ir jį gerai nusako Schechter'io funkcija, kurios charakteringoji masė ~2x10^5 Saulės masių. Tai rodo, kad M31 galaktikoje yra gausi vidutinės masės žvaigždžių spiečių populiacija, kuri mūsų Galaktikoje yra... [toliau žr. visą tekstą]
17

Galaxy evolution and the redshift desert

Kotulla, Ralf Christian January 2011 (has links)
This thesis explores the evolution of galaxies from the onset of star formation shortly after the Big Bang until the present day. Particular emphasis lies on the redshift range z = 1.4 2.5, the so-called “redshift desert”, as it coincides with the peak epoch of cosmic star formation activity and mass assembly. Most of the information about galaxies and their evolution arrives in the form of their integrated light, i.e. the conglomeration of light emitted by stars of various ages and metallicities. In order to interpret the observed spectra and magnitudes, and to extract the physical parameters we therefore require models. This holds true in particular for galaxies too faint to target them spectroscopically, and for which redshifts and physical parameters derived from only their photometry is the only feasible way to study them in more detail. This thesis is concerned with such models, and describes how GALEV evolutionary synthesis models describe the spectral and chemical evolution of galaxies, accounting for gaseous emission and the increasing initial abundances of successive stellar generations, how they compare to observations and what we can learn from their application. Based on a large model grid, covering all observed galaxy evolution stages, I find that sub-solar metallicities have significant impact on the spectra of galaxies, and can lead to systematic errors and biases if not accounted for. A comparison of models with different metallicities furthermore reveals that photometric redshifts are also systematically biased if sub-solar metallicities are not properly accounted for. I also note that even a small mass-fractions of young stars can dominate the overall spectrum, leading to a large underestimation of the mass and age of the stellar population. The models explain not only the colour evolution of galaxies observed at a range of redshifts, but also their physical parameters. I show that with magnitudes in only a few bands we can successfully explain not only the masses of galaxies, but also their star formation rates and, where available from observations, their metallicities. If additional data are available, the grid of models can be used to refine colour selection criteria and to break degeneracies, e.g. between dust-reddened actively star-forming galaxies and intrinsically old, passively evolving galaxies. Using GAZELLE, a photometric redshift code that is purpose-tailored to harmonise with these models, I can extract accurate redshifts and a wealth of physical parameters from the largest ever sample of observed multi-wavelength photometry of galaxies. I then compare our findings with semi-analytical models that trace the evolution of individual galaxies based on cosmological simulations. In my sample I find a significant population of high-mass galaxies that is not accounted for by this class of models. Furthermore a small percentage of massive, yet starforming galaxies challenges our idea on how these galaxies form and evolve. In an appendix to this thesis I present a complementary approach to reconstruct the evolution of galaxies, using star clusters as tracers. I introduce a new technique to break the age-metallicity degeneracy and obtain individual ages and metallicities for a sample of globular clusters, revealing a merger of two Sb/Sc-type spirals 2 Gyrs ago in NGC 4570, a lenticular galaxy in the Virgo cluster. Also in the appendix I show that, at least in the studied galaxy Arp 78, the initial mass function conforms with our assumptions and does not change in low-density environments as recently predicted. Although studies of galaxy evolution are a major field in astronomy, there is still a lot more to be done to reveal the inner workings of these island universes, and this thesis also addresses how to continue and improve the work presented herein.
18

Adaptive optic demonstrators for extremely large telescopes

Campbell, Michael Aloysius January 2011 (has links)
The next generation of ground-based optical/infrared (IR) telescopes will have primary mirrors of up to 42 m. To take advantage of the large potential increase in angular resolution, adaptive optics will be essential to overcome the resolution limits set by atmospheric turbulence. Novel techniques such as Multi-Conjugate Adaptive Optics (MCAO) and Multi-Object Adaptive Optics (MOAO) are being developed to achieve near diffraction-limited images over large fields-of-view. This thesis concerns the development of MCAO and MOAO pathfinders. Specifically, the construction of CANARY, aMOAO demonstrator, and the on-sky performance and scientific exploitation of the Multi-conjugate Adaptive optics Demonstrator (MAD). CANARY is under construction for the William Herschel Telescope (WHT) in La Palma and contains a telescope simulator to allow testing of the set-up in the laboratory. The simulator contains a natural guide star emulator, turbulence phase screens, and telescope relay optics. The work presented here concerns the integration of the various components in relation to numerical models and the CANARY specifications. MAD was a near-IR imager on the Very Large Telescope (VLT) in Chile. Science demonstration observations were taken of R136, the young, massive cluster situated in the 30 Doradus star-forming region in the Large Magellanic Cloud. These data were used here to determine the MCAO performance across the ~1’x1’ field-of-view, for different pointings with respect to the guide stars, finding high Strehl ratios and relatively uniform corrections across the fields. The MAD data are then used to construct radial surface brightness profiles for R136, providing new insights into intriguing past results from the Hubble Space Telescope. The MAD data reveal that the profile is strongly asymmetric, removing the need for dramatic dynamical evolution of the cluster in the recent past, and highlighting the importance of considering asymmetries when analysing clusters further afield. The MAD data, combined with other near-IR imaging from the VLT, are then used to investigate the nature of candidate young stellar objects from recent observations with the Spitzer Space Telescope.
19

IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function

Wilking, B. A., Lada, C. J., Young, E. R. 12 1900 (has links)
No description available.
20

Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

Adamo, A., Ryon, J. E., Messa, M., Kim, H., Grasha, K., Cook, D. O., Calzetti, D., Lee, J. C., Whitmore, B. C., Elmegreen, B. G., Ubeda, L., Smith, L. J., Bright, S. N., Runnholm, A., Andrews, J. E., Fumagalli, M., Gouliermis, D. A., Kahre, L., Nair, P., Thilker, D., Walterbos, R., Wofford, A., Aloisi, A., Ashworth, G., Brown, T. M., Chandar, R., Christian, C., Cignoni, M., Clayton, G. C., Dale, D. A., de Mink, S. E., Dobbs, C., Elmegreen, D. M., Evans, A. S., Gallagher III, J. S., Grebel, E. K., Herrero, A., Hunter, D. A., Johnson, K. E., Kennicutt, R. C., Krumholz, M. R., Lennon, D., Levay, K., Martin, C., Nota, A., Ostlin, G., Pellerin, A., Prieto, J., Regan, M. W., Sabbi, E., Sacchi, E., Schaerer, D., Schiminovich, D., Shabani, F., Tosi, M., Van Dyk, S. D., Zackrisson, E. 05 June 2017 (has links)
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes similar to-2 and a truncation of a few times 10(5) M-circle dot. After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (<= 10(4) M-circle dot) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.

Page generated in 0.0841 seconds