Spelling suggestions: "subject:"Stars: abundances"" "subject:"Stars: abundance's""
11 |
12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791Szigeti, László, Mészáros, Szabolcs, Smith, Verne V, Cunha, Katia, Lagarde, Nadège, Charbonnel, Corinne, García-Hernández, D A, Shetrone, Matthew, Pinsonneault, Marc, Allende Prieto, Carlos, Fernández-Trincado, J G, Kovács, József, Villanova, Sandro 03 1900 (has links)
Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 +/- 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of C-12/C-13. Values of the C-12/C-13 ratio were obtained from a spectrum synthesis analysis. The derived C-12/C-13 ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between C-12/C-13, mass, metallicity, and evolutionary status.
|
12 |
Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical PatternsFernández-Trincado, J. G., Zamora, O., García-Hernández, D. A., Souto, Diogo, Dell’Agli, F., Schiavon, R. P., Geisler, D., Tang, B., Villanova, S., Hasselquist, Sten, Mennickent, R. E., Cunha, Katia, Shetrone, M., Prieto, Carlos Allende, Vieira, K., Zasowski, G., Sobeck, J., Hayes, C. R., Majewski, S. R., Placco, V. M., Beers, T. C., Schleicher, D. R. G., Robin, A. C., Mészáros, Sz., Masseron, T., Pérez, Ana E. García, Anders, F., Meza, A., Alves-Brito, A., Carrera, R., Minniti, D., Lane, R. R., Fernández-Alvar, E., Moreno, E., Pichardo, B., Pérez-Villegas, A., Schultheis, M., Roman-Lopes, A., Fuentes, C. E., Nitschelm, C., Harding, P., Bizyaev, D., Pan, K., Oravetz, D., Simmons, A., Ivans, Inese I., Blanco-Cuaresma, S., Hernández, J., Alonso-García, J., Valenzuela, O., Chanamé, J. 23 August 2017 (has links)
We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe]. < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] greater than or similar to-1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.
|
13 |
A CONSTRAINT ON THE FORMATION TIMESCALE OF THE YOUNG OPEN CLUSTER NGC 2264: LITHIUM ABUNDANCE OF PRE-MAIN SEQUENCE STARSLim, Beomdu, Sung, Hwankyung, Kim, Jinyoung S., Bessell, Michael S., Hwang, Narae, Park, Byeong-Gon 02 November 2016 (has links)
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T-eff [K] <= 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A(Li)= 3.2 +/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.
|
14 |
Towards 21st century stellar models: Star clusters, supercomputing and asteroseismologyCampbell, S. W., Constantino, T. N., D'Orazi, V., Meakin, C., Stello, D., Christensen-Dalsgaard, J., Kuehn, C., De Silva, G. M., Arnett, W. D., Lattanzio, J. C., MacLean, B. T. 10 1900 (has links)
Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy - through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys - are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed and the next generation of stellar models is needed as soon as possible. The current uncertainties in the models propagate to the later phases of stellar evolution, hindering our understanding of stellar populations and chemical evolution. Here we give a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
|
15 |
Examining the relationships between colour, T eff , and [M/H] for APOGEE K and M dwarfsSchmidt, Sarah J., Wagoner, Erika L., Johnson, Jennifer A., Davenport, James R. A., Stassun, Keivan G., Souto, Diogo, Ge, Jian 11 August 2016 (has links)
We present the effective temperatures (T-eff), metallicities, and colours in Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer filters, of a sample of 3834 late-K and early-M dwarfs selected from the SDSS Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectroscopic survey ASPCAP (APOGEE Stellar Parameters and Chemical Abundances Pipeline) catalogue. We confirm that ASPCAP T-eff values between 3550 < T-eff < 4200 K are accurate to similar to 100 K compared to interferometric T-eff values. In that same T-eff range, ASPCAP metallicities are accurate to 0.18 dex between -1.0 <[M/H]< 0.2. For these cool dwarfs, nearly every colour is sensitive to both T-eff and metallicity. Notably, we find that g - r is not a good indicator of metallicity for near-solar metallicity early-M dwarfs. We confirm that J - K-S colour is strongly dependent on metallicity, and find that W1 - W2 colour is a promising metallicity indicator. Comparison of the late-K and early-M dwarf colours, metallicities, and T-eff to those from three different model grids shows reasonable agreement in r - z and J - K-S colours, but poor agreement in u - g, g - r, and W1 - W2. Comparison of the metallicities of the KM dwarf sample to those from previous colour-metallicity relations reveals a lack of consensus in photometric metallicity indicators for late-K and early-M dwarfs. We also present empirical relations for T-eff as a function of r - z colour combined with either [M/H] or W1 - W2 colour, and for [M/H] as a function of r - z and W1 - W2 colour. These relations yield T-eff to similar to 100 K and [M/H] to similar to 0.18 dex precision with colours alone, for T-eff in the range of 3550-4200 K and [M/H] in the range of -0.5-0.2.
|
16 |
Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarfFarihi, J., Koester, D., Zuckerman, B., Vican, L., Gänsicke, B. T., Smith, N., Walth, G., Breedt, E. 11 December 2016 (has links)
The T-eff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 x 10(9) g s(-1), and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.
|
17 |
Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner GalaxySchiavon, Ricardo P., Zamora, Olga, Carrera, Ricardo, Lucatello, Sara, Robin, A. C., Ness, Melissa, Martell, Sarah L., Smith, Verne V., García-Hernández, D. A., Manchado, Arturo, Schönrich, Ralph, Bastian, Nate, Chiappini, Cristina, Shetrone, Matthew, Mackereth, J. Ted, Williams, Rob A., Mészáros, Szabolcs, Allende Prieto, Carlos, Anders, Friedrich, Bizyaev, Dmitry, Beers, Timothy C., Chojnowski, S. Drew, Cunha, Katia, Epstein, Courtney, Frinchaboy, Peter M., García Pérez, Ana E., Hearty, Fred R., Holtzman, Jon A., Johnson, Jennifer A., Kinemuchi, Karen, Majewski, Steven R., Muna, Demitri, Nidever, David L., Nguyen, Duy Cuong, O'Connell, Robert W., Oravetz, Daniel, Pan, Kaike, Pinsonneault, Marc, Schneider, Donald P., Schultheis, Matthias, Simmons, Audrey, Skrutskie, Michael F., Sobeck, Jennifer, Wilson, John C., Zasowski, Gail 11 February 2017 (has links)
Formation of globular clusters (GCs), the Galactic bulge, or galaxy bulges in general is an important unsolved problem in Galactic astronomy. Homogeneous infrared observations of large samples of stars belonging to GCs and the Galactic bulge field are one of the best ways to study these problems. We report the discovery by APOGEE (Apache Point Observatory Galactic Evolution Experiment) of a population of field stars in the inner Galaxy with abundances of N, C, and Al that are typically found in GC stars. The newly discovered stars have high [N/Fe], which is correlated with [Al/Fe] and anticorrelated with [C/Fe]. They are homogeneously distributed across, and kinematically indistinguishable from, other field stars within the same volume. Their metallicity distribution is seemingly unimodal, peaking at [Fe/H] similar to -1, thus being in disagreement with that of the Galactic GC system. Our results can be understood in terms of different scenarios. N-rich stars could be former members of dissolved GCs, in which case the mass in destroyed GCs exceeds that of the surviving GC system by a factor of similar to 8. In that scenario, the total mass contained in so-called 'first-generation' stars cannot be larger than that in 'second-generation' stars by more than a factor of similar to 9 and was certainly smaller. Conversely, our results may imply the absence of a mandatory genetic link between 'second-generation' stars and GCs. Last, but not least, N-rich stars could be the oldest stars in the Galaxy, the by-products of chemical enrichment by the first stellar generations formed in the heart of the Galaxy.
|
18 |
Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186Souto, D., Cunha, K., Garcia-Hernandez, D. A., Zamora, O., Prieto, C. Allende, Smith, V. V., Mahadevan, S., Blake, C., Johnson, J. A., Jonsson, H., Pinsonneault, M., Holtzman, J., Majewski, S. R., Shetrone, M., Teske, J., Nidever, D., Schiavon, R., Sobeck, J., Garcia Perez, A. E., Gomez Maqueo Chew, Y., Stassun, K. 31 January 2017 (has links)
We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution (R similar to 22,500) H-band spectra from the SDSS-IV-APOGEE survey. Chemical abundances of 13 elements-C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe-are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H2O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H](Kepler-138) = -0.09 +/- 0.09 dex and [Fe/H](Kepler-186) = -0.08 +/- 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by similar to 0.1-0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 +/- 0.10 for Kepler-138 and 0.52 +/- 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.
|
19 |
ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINEGarcía Pérez, Ana E., Prieto, Carlos Allende, Holtzman, Jon A., Shetrone, Matthew, Mészáros, Szabolcs, Bizyaev, Dmitry, Carrera, Ricardo, Cunha, Katia, García-Hernández, D. A., Johnson, Jennifer A., Majewski, Steven R., Nidever, David L., Schiavon, Ricardo P., Shane, Neville, Smith, Verne V., Sobeck, Jennifer, Troup, Nicholas, Zamora, Olga, Weinberg, David H., Bovy, Jo, Eisenstein, Daniel J., Feuillet, Diane, Frinchaboy, Peter M., Hayden, Michael R., Hearty, Fred R., Nguyen, Duy C., O’Connell, Robert W., Pinsonneault, Marc H., Wilson, John C., Zasowski, Gail 23 May 2016 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R approximate to 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using. 2 minimization in a multidimensional parameter space. The package consists of a FORTRAN90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.
|
20 |
A SPECTROSCOPIC SEARCH FOR CHEMICALLY STRATIFIED WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEYManseau, P. M., Bergeron, P., Green, E. M. 13 December 2016 (has links)
We present a detailed search and analysis of chemically stratified hybrid (traces of helium and hydrogen) white dwarfs in the Sloan Digital Sky Survey (SDSS). Only one stratified white dwarf, PG 1305-017, was known prior to this analysis. The main objective is to confirm the existence of several new stratified objects. We first describe our new generation of stratified model atmospheres, where a thin hydrogen layer floats in diffusive equilibrium on top of a more massive helium layer. We then present the results of our search for hot (T-eff > 30,000 K) white dwarfs with a hybrid spectral type among the similar to 38,000 white dwarf spectra listed in the SDSS. A total of 51 spectra were retained in our final sample, which we analyze using spectroscopic fits to both chemically homogeneous and stratified model atmospheres. We identify 14 new stratified white dwarfs in the SDSS sample. From these results, we draw several conclusions regarding the physical processes that might explain the presence of helium in the atmospheres of all the stars in our sample.
|
Page generated in 0.0342 seconds