• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 4
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Statistická analýza finančních rizikových faktorů podniku / Statistical Analysis of a Company´s Financial Risk Factors

Kinclová, Petra January 2013 (has links)
The master’s thesis deals with the usage of statistical analysis in the evaluation of the financial situation of the chosen company. The author focuses on the analysis of economic indocators, that are used in business practice for the assessment of the company financial situation. Summarized economic data are analyzed by financial and statistical analysis. The data comparism results to recommendations that may be impemented for company improvement. On the basis of historical data and trends prognosis the company gets specific picture about future situation and the effects on the market.
12

Podmíněnosti spokojenosti se životem v Česku se zaměřením na geografické faktory / Determinants of life satisfaction in Czechia with the focus on geographical factors

Procházka, Petr January 2015 (has links)
The objective of this thesis is to analyse determinants of subjective well-being in Czechia and to compare them with other empirical evidence from Czechia and abroad. Main theoretical approaches include those emphasising "psychological" factors and those emphasising factors outside of the human personality. Data from the Public Opinion Research Centre of more than 2,000 respondents from Czechia of years 2013 and 2014 were analysed statistically. Measures of so-called global and local subjective well-being were dependent variables. Independent variables include "geographical" and demographic variables and other dummies. It was confirmed that people living in more populated buildings, with a lower space mobility, older, of a lower employment status or unemployed, lower education and left-wing oriented declare usually a lower results on the subjective well-being, too. Gender and income had variable effect on the subjective well-being. Theoretical assumptions were not confirmed considering the settlement size, mode of commuting and religion.
13

A associação entre remuneração de agente e desempenho financeiro de empresas brasileiras de capital aberto

Donatti, Nelita January 2014 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-06-27T12:35:42Z No. of bitstreams: 1 45.pdf: 1909890 bytes, checksum: a826b23d33eab50cce7d62b7876d703e (MD5) / Made available in DSpace on 2015-06-27T12:35:43Z (GMT). No. of bitstreams: 1 45.pdf: 1909890 bytes, checksum: a826b23d33eab50cce7d62b7876d703e (MD5) Previous issue date: 2014 / Nenhuma / O objetivo principal deste estudo foi identificar associações entre os pacotes de remuneração dos agentes das empresas brasileiras listadas no Novo Mercado com os seus indicadores de desempenho financeiro. Em segundo lugar, buscou-se verificar o cumprimento de normativo que prevê a divulgação das informações relativas à remuneração desses agentes, bem como mapear a composição de tais remunerações. A governança corporativa e a teoria da agência são usadas para desenvolver o arcabouço teórico que sustenta o estudo. A pesquisa baseia-se nos dados de 100% das empresas listadas no segmento de Novo Mercado no período de 2008 a 2012. Os dados são estudados por meio de métodos estatísticos, em particular análises descritivas e de correlação. Contrariamente às expectativas, o estudo conclui que há poucas correlações estatisticamente significativas entre as remunerações dos agentes das empresas brasileiras do Novo Mercado e seus indicadores de desempenho financeiro. Ademais, observa-se uma melhora na transparência de informações pelo cumprimento da exigência de informar a composição das remunerações dos agentes. Este estudo contribui para a literatura de gestão, sobretudo a literatura que discute a remuneração como ferramenta para mitigar os problemas de agência no Brasil. / The main objective of this study was to identify correlations between the remuneration packages of agents in Brazilian public entities listed in the “Novo Mercado” with their financial performance indicators. Secondly, it aimed to evaluate the compliance with technical standard of the disclosure of information related to the remuneration of such agents as well to map the components of this remuneration. Corporate governance and Theory of Agency were used to develop the theoretical background that supports this study. The research is based on the data from 100% of entities listed in the New Market from 2008 to 2012. Data is analyzed through a variety of statistical methodologies, in particular, descriptive analyses and correlation. Against the expectations, the study concluded that there are few correlations statistically meaningful between the remuneration of the agents of the Brazilian entities in the Novo Mercado and their financial performance indicators. In addition, an improvement in the clarity of information due to the requirements of disclosing the components of agent's remuneration is noted. This study contributes to the literature in Management, in particular, to the literature that discuss remuneration as a tool to mitigate the problems of Theory of Agency in Brazil.
14

Analýza vybrané firmy pomocí statistických metod / Analysis of a Selected Company Using Statistical Methods

Poláček, Lukáš January 2012 (has links)
The master’s thesis deals with the aggregate reviews of the economic situation of one joint-stock company, primarily using statistical methods. The goal will be to analyse the data by these means, to compare them, to make the conclusions and suggestions for improvement. From the knowledge of historical data and forecasting preconditions for the future the company will gain clearer image about its development and future directions.
15

Analýza ekonomických ukazatelů pomocí statistických metod / Analysis of Economic Indicators Using Statistical Methods

Barva, David January 2013 (has links)
The master thesis evaluates economic situation of a company using statistical methods. The paper comes out of the company's financial statement that have been economically analysed and led to statistical analysis. Using statistic methods together with historical data estimates future trends. Consequently, solutions that could lead to the company's financial stability and sustainable management.
16

Analýza vybrané firmy pomocí časových řad / Analysis of a Selected Company Using Time Series

Poláček, Lukáš January 2013 (has links)
The thesis is an analysis of economic indicators one joint stock company Jihomoravská plynárenská using statistical methods. The goal is an evaluation of economic indicators, to make the conclusions and suggestions for improvement. The suggest part of thesis deals with the pricing issues and looking for new opportunities. The thesis contains theoretical background needed for full understanding of the analytical part, analysis and recommendations, which after putting themselves into practice contribute to the improvement of present condition as well.
17

Uplatnění statistických metod při zpracování dat / The Use of Statistical Methods for Data Processing

Matuškovič, Marián January 2015 (has links)
This master thesis focuses on application of statistical methods in the processing of data. The first part of the thesis describes the theoretical foundations that are the basis for the practical part. Next part of this thesis describes the statistical and financial analysis and also design of an application that automate usage of statistical methods of regression analysis to predict the future economic situation development of the company. This thesis contains theory of time series methods and regression analysis.
18

Phenomenology of the Higgs and Flavour Physics in the Standard Model and Beyond

Alasfar, Lina 14 October 2022 (has links)
In dieser Arbeit werden einige zukünftige Aspekte der Higgs-Messungen ein Jahrzehnt nach seiner Entdeckung untersucht, wobei der Schwerpunkt auf dem Potenzial für zukünftige Läufe des Large Hadron Collider (LHC) liegt. Insbesondere sollen anspruchsvolle Kopplungen des Higgs, wie seine Selbstkopplung und die Wechselwirkung mit leichten Quarks, untersucht werden. Der erste Teil gibt einen Überblick über die Higgs-Physik innerhalb der effektiven Feldtheorie des Standardmodells (SMEFT). Der zweite Teil befasst sich mit der Single-Higgs-Produktion, beginnend mit einer Zweischleifenberechnung der Gluonenfusionskomponente von Zh, um deren theoretische Unsicherheiten zu reduzieren. Dann wird das Potenzial für die Einschränkung der trilinearen Higgs-Selbstkopplung aus Einzel-Higgs-Raten erneut untersucht, indem ebenso schwach eingeschränkte Vier-Schwer-Quark-Operatoren einbezogen werden, die bei der nächsthöheren Ordnung in die Einzel-Higgs-Raten eingehen. Diese Operatoren korrelieren in hohem Maße mit der trilinearen Selbstkopplung, was sich auf die Anpassungen auswirkt, die für diese Kopplung anhand von Einzel-Higgs-Daten vorgenommen wurden. Der dritte Teil konzentriert sich auf die Higgs-Paarproduktion, einen wesentlichen Prozess zur Messung der Higgs-Selbstkopplung, und setzt eine multivariate Analyse ein, um ihr Potenzial zur Untersuchung der leichten Yukawa-Kopplungen zu untersuchen; dadurch wird die Empfindlichkeit der Higgs-Paarproduktion für die leichten Quark-Yukawa-Wechselwirkungen erforscht. Schließlich werden im vierten Teil einige Modelle vorgestellt, die darauf abzielen, die jüngsten Flavour-Anomalien im Lichte einer globalen SMEFT-Bayesian-Analyse zu erklären, die Flavour- und elektroschwache Präzisionsmessungen kombiniert. / This thesis investigates some future aspects of Higgs measurements a decade after its discovery, focusing on the potential for future runs of the Large Hadron Collider (LHC). In particular, it aims to probe challenging couplings of the Higgs like its self-coupling and interaction with light quarks. The first part provides an overview of Higgs physics within the Standard Model Effective Field theory (SMEFT). The second part is about single-Higgs production, starting with a two-loop calculation of the gluon fusion component of Zh to reduce its theoretical uncertainties. Then, the potential for constraining the Higgs trilinear self-coupling from single Higgs rates is revisited; by including equally weaklyconstrained four-heavy-quark operators entering at the next-to-leading order in single Higgs rates. These operators highly correlate with the trilinear self-coupling, thus affecting the fits made on this coupling from single Higgs data. The third part focuses on the Higgs pair production, an essential process for measuring Higgs-self coupling, employing multivariate analysis to study its potential for probing light Yukawa couplings; thereby exploring the sensitivity of Higgs pair production for the light-quark Yukawa interactions. Finally, the fourth part showcases some models aiming to explain the recent flavour anomalies in the light of a global SMEFT Bayesian analysis combining flavour and electroweak precision measurements.
19

A Bridge between Short-Range and Seasonal Forecasts: Data-Based First Passage Time Prediction in Temperatures

Wulffen, Anja von 18 February 2013 (has links) (PDF)
Current conventional weather forecasts are based on high-dimensional numerical models. They are usually only skillful up to a maximum lead time of around 7 days due to the chaotic nature of the climate dynamics and the related exponential growth of model and data initialisation errors. Even the fully detailed medium-range predictions made for instance at the European Centre for Medium-Range Weather Forecasts do not exceed lead times of 14 days, while even longer-range predictions are limited to time-averaged forecast outputs only. Many sectors would profit significantly from accurate forecasts on seasonal time scales without needing the wealth of details a full dynamical model can deliver. In this thesis, we aim to study the potential of a much cheaper data-based statistical approach to provide predictions of comparable or even better skill up to seasonal lead times, using as an examplary forecast target the time until the next occurrence of frost. To this end, we first analyse the properties of the temperature anomaly time series obtained from measured data by subtracting a sinusoidal seasonal cycle, as well as the distribution properties of the first passage times to frost. The possibility of generating additional temperature anomaly data with the same properties by using very simple autoregressive model processes to potentially reduce the statistical fluctuations in our analysis is investigated and ultimately rejected. In a next step, we study the potential for predictability using only conditional first passage time distributions derived from the temperature anomaly time series and confirm a significant dependence of the distributions on the initial conditions. After this preliminary analysis, we issue data-based out-of-sample forecasts for three different prediction targets: The specific date of first frost, the probability of observing frost before summer for forecasts issued in spring, and the full probability distribution of the first passage times to frost. We then study the possibility of improving the forecast quality first by enhancing the stationarity of the temperature anomaly time series and then by adding as an additional input variable the state of the North Atlantic Oscillation on the date the predictions are issued. We are able to obtain significant forecast skill up to seasonal lead times when comparing our results to an unskilled reference forecast. A first comparison between the data-based forecasts and corresponding predictions gathered from a dynamical weather model, necessarily using a lead time of only up to 15 days, shows that our simple statistical schemes are only outperformed (and then only slightly) if further statistical post-processing is applied to the model output. / Aktuelle Wetterprognosen werden mit Hilfe von hochdimensionalen, numerischen Modellen generiert. Durch die dem Klima zugrunde liegende chaotische Dynamik wachsen Modellfehler und Ungenauigkeiten in der Modellinitialisierung exponentiell an, sodass Vorhersagen mit signifikanter Güte üblicherweise nur für eine Vorlaufzeit von maximal sieben Tagen möglich sind. Selbst die detaillierten Prognosen des Europäischen Zentrums für mittelfristige Wettervorhersagen gehen nicht über eine Vorlaufzeit von 14 Tagen hinaus, während noch längerfristigere Vorhersagen auf zeitgemittelte Größen beschränkt sind. Viele Branchen würden signifikant von akkuraten Vorhersagen auf saisonalen Zeitskalen pro-fitieren, ohne das ganze Ausmaß an Details zu benötigen, das von einem vollständigen dynamischen Modell geliefert werden kann. In dieser Dissertation beabsichtigen wir, am Beispiel einer Vorhersage der Zeitdauer bis zum nächsten Eintreten von Frost zu untersuchen, inwieweit deutlich kostengünstigere, datenbasierte statistische Verfahren Prognosen von gleicher oder sogar besserer Güte auf bis zu saisonalen Zeitskalen liefern können. Dazu analysieren wir zunächst die Eigenschaften der Zeitreihe der Temperaturanomalien, die aus den Messdaten durch das Subtrahieren eines sinusförmigen Jahresganges erhalten werden, sowie die Charakteristiken der Wahrscheinlichkeitsverteilungen der Zeitdauer bis zum nächsten Eintreten von Frost. Die Möglichkeit, durch einen einfachen autoregressiven Modellprozess zusätzliche Datenpunkte gleicher statistischer Eigenschaften wie der Temperaturanomalien zu generieren, um die statistischen Fluktuationen in der Analyse zu reduzieren, wird untersucht und letztendlich verworfen. Im nächsten Schritt analysieren wir das Vorhersagepotential, wenn ausschließlich aus den Temperaturanomalien gewonnene bedingte Wahrscheinlichkeitsverteilungen der Wartezeit bis zum nächsten Frost verwendet werden, und können eine signifikante Abhängigkeit der Verteilungen von den Anfangsbedingungen nachweisen. Nach dieser einleitenden Untersuchung erstellen wir datenbasierte Prognosen für drei verschiedene Vorhersagegrößen: Das konkrete Datum, an dem es das nächste Mal Frost geben wird; die Wahrscheinlichkeit, noch vor dem Sommer Frost zu beobachten, wenn die Vorhersagen im Frühjahr ausgegeben werden; und die volle Wahrscheinlichkeitsverteilung der Zeitdauer bis zum nächsten Eintreten von Frost. Anschließend untersuchen wir die Möglichkeit, die Vorhersagegüte weiter zu erhöhen - zunächst durch eine Verbesserung der Stationarität der Temperaturanomalien und dann durch die zusätzliche Berücksichtigung der Nordatlantischen Oszillation als einer zweiten, den Anfangszustand charakterisierenden Variablen im Vorhersageschema. Wir sind in der Lage, im Vergleich mit einem naiven Referenzvorhersageschema eine signifikante Verbesserung der Vorhersagegüte auch auf saisonalen Zeitskalen zu erreichen. Ein erster Vergleich zwischen den datenbasierten Vorhersagen und entsprechenden, aus den dynamischen Wettermodellen gewonnenen Prognosen, der sich notwendigerweise auf eine Vorlaufzeit der Vorhersagen von lediglich 15 Tagen beschränkt, zeigt, dass letztere unsere simplen statistischen Vorhersageschemata nur schlagen (und zwar knapp), wenn der Modelloutput noch einer statistischen Nachbearbeitung unterzogen wird.
20

A Bridge between Short-Range and Seasonal Forecasts: Data-Based First Passage Time Prediction in Temperatures

Wulffen, Anja von 25 January 2013 (has links)
Current conventional weather forecasts are based on high-dimensional numerical models. They are usually only skillful up to a maximum lead time of around 7 days due to the chaotic nature of the climate dynamics and the related exponential growth of model and data initialisation errors. Even the fully detailed medium-range predictions made for instance at the European Centre for Medium-Range Weather Forecasts do not exceed lead times of 14 days, while even longer-range predictions are limited to time-averaged forecast outputs only. Many sectors would profit significantly from accurate forecasts on seasonal time scales without needing the wealth of details a full dynamical model can deliver. In this thesis, we aim to study the potential of a much cheaper data-based statistical approach to provide predictions of comparable or even better skill up to seasonal lead times, using as an examplary forecast target the time until the next occurrence of frost. To this end, we first analyse the properties of the temperature anomaly time series obtained from measured data by subtracting a sinusoidal seasonal cycle, as well as the distribution properties of the first passage times to frost. The possibility of generating additional temperature anomaly data with the same properties by using very simple autoregressive model processes to potentially reduce the statistical fluctuations in our analysis is investigated and ultimately rejected. In a next step, we study the potential for predictability using only conditional first passage time distributions derived from the temperature anomaly time series and confirm a significant dependence of the distributions on the initial conditions. After this preliminary analysis, we issue data-based out-of-sample forecasts for three different prediction targets: The specific date of first frost, the probability of observing frost before summer for forecasts issued in spring, and the full probability distribution of the first passage times to frost. We then study the possibility of improving the forecast quality first by enhancing the stationarity of the temperature anomaly time series and then by adding as an additional input variable the state of the North Atlantic Oscillation on the date the predictions are issued. We are able to obtain significant forecast skill up to seasonal lead times when comparing our results to an unskilled reference forecast. A first comparison between the data-based forecasts and corresponding predictions gathered from a dynamical weather model, necessarily using a lead time of only up to 15 days, shows that our simple statistical schemes are only outperformed (and then only slightly) if further statistical post-processing is applied to the model output. / Aktuelle Wetterprognosen werden mit Hilfe von hochdimensionalen, numerischen Modellen generiert. Durch die dem Klima zugrunde liegende chaotische Dynamik wachsen Modellfehler und Ungenauigkeiten in der Modellinitialisierung exponentiell an, sodass Vorhersagen mit signifikanter Güte üblicherweise nur für eine Vorlaufzeit von maximal sieben Tagen möglich sind. Selbst die detaillierten Prognosen des Europäischen Zentrums für mittelfristige Wettervorhersagen gehen nicht über eine Vorlaufzeit von 14 Tagen hinaus, während noch längerfristigere Vorhersagen auf zeitgemittelte Größen beschränkt sind. Viele Branchen würden signifikant von akkuraten Vorhersagen auf saisonalen Zeitskalen pro-fitieren, ohne das ganze Ausmaß an Details zu benötigen, das von einem vollständigen dynamischen Modell geliefert werden kann. In dieser Dissertation beabsichtigen wir, am Beispiel einer Vorhersage der Zeitdauer bis zum nächsten Eintreten von Frost zu untersuchen, inwieweit deutlich kostengünstigere, datenbasierte statistische Verfahren Prognosen von gleicher oder sogar besserer Güte auf bis zu saisonalen Zeitskalen liefern können. Dazu analysieren wir zunächst die Eigenschaften der Zeitreihe der Temperaturanomalien, die aus den Messdaten durch das Subtrahieren eines sinusförmigen Jahresganges erhalten werden, sowie die Charakteristiken der Wahrscheinlichkeitsverteilungen der Zeitdauer bis zum nächsten Eintreten von Frost. Die Möglichkeit, durch einen einfachen autoregressiven Modellprozess zusätzliche Datenpunkte gleicher statistischer Eigenschaften wie der Temperaturanomalien zu generieren, um die statistischen Fluktuationen in der Analyse zu reduzieren, wird untersucht und letztendlich verworfen. Im nächsten Schritt analysieren wir das Vorhersagepotential, wenn ausschließlich aus den Temperaturanomalien gewonnene bedingte Wahrscheinlichkeitsverteilungen der Wartezeit bis zum nächsten Frost verwendet werden, und können eine signifikante Abhängigkeit der Verteilungen von den Anfangsbedingungen nachweisen. Nach dieser einleitenden Untersuchung erstellen wir datenbasierte Prognosen für drei verschiedene Vorhersagegrößen: Das konkrete Datum, an dem es das nächste Mal Frost geben wird; die Wahrscheinlichkeit, noch vor dem Sommer Frost zu beobachten, wenn die Vorhersagen im Frühjahr ausgegeben werden; und die volle Wahrscheinlichkeitsverteilung der Zeitdauer bis zum nächsten Eintreten von Frost. Anschließend untersuchen wir die Möglichkeit, die Vorhersagegüte weiter zu erhöhen - zunächst durch eine Verbesserung der Stationarität der Temperaturanomalien und dann durch die zusätzliche Berücksichtigung der Nordatlantischen Oszillation als einer zweiten, den Anfangszustand charakterisierenden Variablen im Vorhersageschema. Wir sind in der Lage, im Vergleich mit einem naiven Referenzvorhersageschema eine signifikante Verbesserung der Vorhersagegüte auch auf saisonalen Zeitskalen zu erreichen. Ein erster Vergleich zwischen den datenbasierten Vorhersagen und entsprechenden, aus den dynamischen Wettermodellen gewonnenen Prognosen, der sich notwendigerweise auf eine Vorlaufzeit der Vorhersagen von lediglich 15 Tagen beschränkt, zeigt, dass letztere unsere simplen statistischen Vorhersageschemata nur schlagen (und zwar knapp), wenn der Modelloutput noch einer statistischen Nachbearbeitung unterzogen wird.

Page generated in 0.1199 seconds