Spelling suggestions: "subject:"statistique none asymptotic"" "subject:"statistique noun asymptotic""
1 |
Estimation par sélection de modèle en régression hétéroscédastiqueGendre, Xavier 15 June 2009 (has links) (PDF)
Cette thèse s'inscrit dans les domaines de la statistique non-asymptotique et de la théorie statistique de la sélection de modèle. Son objet est la construction de procédures d'estimation de paramètres en régression hétéroscédastique. Ce cadre reçoit un intérêt croissant depuis plusieurs années dans de nombreux champs d'application. Les résultats présentés reposent principalement sur des inégalités de concentration et sont illustrés par des applications à des données simulées.<br /><br />La première partie de cette thèse consiste dans l'étude du problème d'estimation de la moyenne et de la variance d'un vecteur gaussien à coordonnées indépendantes. Nous proposons une méthode de choix de modèle basée sur un critère de vraisemblance pénalisé. Nous validons théoriquement cette approche du point de vue non-asymptotique en prouvant des majorations de type oracle du risque de Kullback de nos estimateurs et des vitesses de convergence uniforme sur les boules de Hölder.<br /><br />Un second problème que nous abordons est l'estimation de la fonction de régression dans un cadre hétéroscédastique à dépendances connues. Nous développons des procédures de sélection de modèle tant sous des hypothèses gaussiennes que sous des conditions de moment. Des inégalités oracles non-asymptotiques sont données pour nos estimateurs ainsi que des propriétés d'adaptativité. Nous appliquons en particulier ces résultats à l'estimation d'une composante dans un modèle de régression additif.
|
2 |
Apprentissage statistique multi-tâchesSolnon, Matthieu 25 November 2013 (has links) (PDF)
Cette thèse a pour objet la construction, la calibration et l'étude d'estimateurs multi-tâches, dans un cadre fréquentiste non paramétrique et non asymptotique. Nous nous plaçons dans le cadre de la régression ridge à noyau et y étendons les méthodes existantes de régression multi-tâches. La question clef est la calibration d'un paramètre de régularisation matriciel, qui encode la similarité entre les tâches. Nous proposons une méthode de calibration de ce paramètre, fondée sur l'estimation de la matrice de covariance du bruit entre les tâches. Nous donnons ensuite pour l'estimateur obtenu des garanties d'optimalité, via une inégalité oracle, puis vérifions son comportement sur des exemples simulés. Nous obtenons par ailleurs un encadrement précis des risques des estimateurs oracles multi-tâches et mono-tâche dans certains cas. Cela nous permet de dégager plusieurs situations intéressantes, où l'oracle multi-tâches est plus efficace que l'oracle mono-tâche, ou vice versa. Cela nous permet aussi de nous assurer que l'inégalité oracle force l'estimateur multi-tâches à avoir un risque inférieur à l'estimateur mono-tâche dans les cas étudiés. Le comportement des oracles multi-tâches et mono-tâche est vérifié sur des exemples simulés.
|
3 |
Modèles de substitution spatio-temporels et multifidélité : Application à l'ingénierie thermique / Spatio-temporal and multifidelity surrogate models : Application in thermal engineeringDe lozzo, Matthias 03 December 2013 (has links)
Cette thèse porte sur la construction de modèles de substitution en régimes transitoire et permanent pour la simulation thermique, en présence de peu d'observations et de plusieurs sorties.Nous proposons dans un premier temps une construction robuste de perceptron multicouche bouclé afin d'approcher une dynamique spatio-temporelle. Ce modèle de substitution s'obtient par une moyennisation de réseaux de neurones issus d'une procédure de validation croisée, dont le partitionnement des observations associé permet d'ajuster les paramètres de chacun de ces modèles sur une base de test sans perte d'information. De plus, la construction d'un tel perceptron bouclé peut être distribuée selon ses sorties. Cette construction est appliquée à la modélisation de l'évolution temporelle de la température en différents points d'une armoire aéronautique.Nous proposons dans un deuxième temps une agrégation de modèles par processus gaussien dans un cadre multifidélité où nous disposons d'un modèle d'observation haute-fidélité complété par plusieurs modèles d'observation de fidélités moindres et non comparables. Une attention particulière est portée sur la spécification des tendances et coefficients d'ajustement présents dans ces modèles. Les différents krigeages et co-krigeages sont assemblés selon une partition ou un mélange pondéré en se basant sur une mesure de robustesse aux points du plan d'expériences les plus fiables. Cette approche est employée pour modéliser la température en différents points de l'armoire en régime permanent.Nous proposons dans un dernier temps un critère pénalisé pour le problème de la régression hétéroscédastique. Cet outil est développé dans le cadre des estimateurs par projection et appliqué au cas particulier des ondelettes de Haar. Nous accompagnons ces résultats théoriques de résultats numériques pour un problème tenant compte de différentes spécifications du bruit et de possibles dépendances dans les observations. / This PhD thesis deals with the construction of surrogate models in transient and steady states in the context of thermal simulation, with a few observations and many outputs.First, we design a robust construction of recurrent multilayer perceptron so as to approach a spatio-temporal dynamic. We use an average of neural networks resulting from a cross-validation procedure, whose associated data splitting allows to adjust the parameters of these models thanks to a test set without any information loss. Moreover, the construction of this perceptron can be distributed according to its outputs. This construction is applied to the modelling of the temporal evolution of the temperature at different points of an aeronautical equipment.Then, we proposed a mixture of Gaussian process models in a multifidelity framework where we have a high-fidelity observation model completed by many observation models with lower and no comparable fidelities. A particular attention is paid to the specifications of trends and adjustement coefficients present in these models. Different kriging and co-krigings models are put together according to a partition or a weighted aggregation based on a robustness measure associated to the most reliable design points. This approach is used in order to model the temperature at different points of the equipment in steady state.Finally, we propose a penalized criterion for the problem of heteroscedastic regression. This tool is build in the case of projection estimators and applied with the Haar wavelet. We also give some numerical results for different noise specifications and possible dependencies in the observations.
|
4 |
Optimal tests for symmetryCassart, Delphine 01 June 2007 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie. <p>La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application. <p>Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.<p><p>Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).<p>Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.<p>Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.<p><p>Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables. <p>Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance. <p>Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités. <p><p>A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.<p>Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations. / Doctorat en sciences, Orientation statistique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.094 seconds