Spelling suggestions: "subject:"estator resistance"" "subject:"astator resistance""
1 |
Active thermal protection for induction motors fed by motor control devicesZhang, Pinjia 10 March 2010 (has links)
Induction motors are widely used in industrial processes. The malfunction of a motor may not only lead to high repair costs, but also cause immense financial losses due to unexpected process downtime. Since thermal overload is one of the major root causes of stator winding insulation failure, an accurate and reliable monitoring of the stator winding temperature is crucial to increase the mean time to catastrophic motor breakdown, and to reduce the extraordinary financial losses due to unexpected process downtime.
To provide a reliable thermal protection for induction motors fed by motor control devices, a dc signal-injection method is proposed for in-service induction motors fed by soft-starter and variable-frequency drives. The stator winding temperature can be monitored based on the estimated stator winding resistance using the dc model of induction motors. In addition, a cooling capability monitoring technique is proposed to monitor the cooling capability of induction motors and to warn the user for proactive inspection and maintenance in the case of cooling capability deterioration. The proposed cooling capability monitoring technique, combined with the proposed stator winding temperature monitoring technique, can provide a complete thermal protection for in-service induction motors fed by motor control devices.
Aside from online thermal protection during a motor's normal operation, the thermal protection of de-energized motors is also essential to prolong a motor's lifetime. Moisture condensation is one of the major causes to motor degradation especially in high-humidity environments. To prevent moisture condensation, a non-intrusive motor heating technique is proposed by injecting currents into the motor stator winding using soft-starters. A motor's temperature can be kept above the ambient temperature due to the heat dissipation, so that the moisture condensation can be avoided.
To sum up, active stator winding temperature estimation techniques for induction motors under both operating and de-energization conditions are proposed in this dissertation for both thermal protection and optimizing the operation of a motor system. The importance of these proposed techniques lies in their non-intrusive nature: only the existing hardware in a motor control device is required for implementation; a motor's normal operation is not interrupted.
|
2 |
Analysis of the dynamics of the linear-and-rotary-motion energy-conversion systems with active DC excitationHe, Lijun 07 January 2016 (has links)
The objective of the dissertation is to develop simplified analytical models for typical linear-motion and rotary-motion energy-conversion systems under active DC excitation without tedious numerical-simulation effort, and provide practical implementation of the models in optimal-design and thermal-protection aspects.
The model of a vacuum automatic circuit recloser (a typical linear-motion system under DC excitation) is first developed in the form of a non-linear discontinuous eighth-order dynamic system. The model is then used to simulate the transient mechanical and electromagnetic performance during the opening and closing movements of the recloser. Such a model is not found in the literature.
Although the model is based on certain simplifying assumptions, the result is validated by high-speed-camera measurements. In addition, the impact of key design variables is explored, based on which an improved recloser design is proposed, and helps to optimize capital and production costs without degrading performance.
Further analytical investigation is carried out in modeling an inverter-fed induction motor (IM) (a typical rotary-motion system) with active DC injection. The IM is closed-loop controlled via two popular motor-control algorithms, namely, the direct-torque-control (DTC) algorithm and field-oriented-control (FOC) algorithm. Quantitative relationships between the changes of various machine variables during the active DC excitation are provided in the theoretical analysis. The developed DC-injection model is further simplified for practical implementation.
The developed IM model under DC injection results in practical ways to excite a proper amount of DC current directly or indirectly into IM stator windings via different closed-loop motor-control algorithms. In a DTC motor-drive system, the modeling work makes it possible to excite the DC current indirectly inside the motor by superimposing a stator-flux-linkage-bias command in the flux-control loop or a torque-ripple command in the torque-control loop. The proposed flux-linkage-injection and torque-injection methods are the first novel efforts to implement the DC-signal-injection method in a DTC motor-drive system. In addition, the analysis carried out in a standard FOC drive system brings about an improved DC-current-injection approach: the torque ripple in this method is significantly mitigated compared to all existing DC-injection methods in FOC systems.
The proposed DC-injection methods, either in a DTC or an FOC system, lead to a simple, low-cost, accurate, and non-invasive thermal-monitoring scheme for closed-loop-controlled IMs, where the stator temperature is indirectly estimated from stator resistance.
Furthermore, considering inverter non-idealities, there is a challenge for a typical inverter drive to accurately estimate the DC component of motor terminal voltages. The existing methods are extended to provide a complete study of the real-time signal-processing technique for both DTC and FOC algorithms, and are finally implemented in a custom-built programmable motor-drive system. The experimental results demonstrate that the proposed technique gives accurate and robust stator-temperature estimation, regardless of the operating conditions and cooling modes.
The analytical modeling method for the linear-motion and rotary-motion energy-conversion systems can be further extended to other power devices with similar mechanisms, and implemented in optimal design, control, and thermal-protection areas.
|
3 |
Flux Estimation, Parameter Adaptation And Speed Sensorless Control For Vector Controlled Induction Motor DriveBhattacharya, Tanmoy 01 1900 (has links) (PDF)
No description available.
|
4 |
Online Parameter Estimation of a Six- Phase Machine for Marine ApplicationMontalba Mesa, Raimundo January 2021 (has links)
In the recent decades, an increased interest into multiphase machines has developed due to certain beneficial properties they have over the standard three- phase machines. Proper modelling of a multiphase machine allows access to higher degrees of freedom given by the ability to control higher order harmonic frames. This feature is of particular interest in the area of parameter estimation as it may provide an opportunity to implement methods that are not feasible in three- phase machines. Modelling of a real six- phase machine meant for marine application with a functioning control structure is carried out on MATLAB/Simulink; considering nonlinear relations, cross coupling and saturation effects, the model includes the machine’s behavior in the fundamental frame as well as the next two higher order harmonic frames. Stator resistances and permanent magnet flux linkage are estimated online and simultaneously during various operating points. It is shown that stator resistance may be accurately estimated by means of DC test signal injections into the highest order harmonic frame; thus, minimizing torque ripple and additional loss generation. Permanent magnet flux linkage is accurately estimated via reactive power calculations on the fundamental frame which remains undisturbed by the aforementioned test signals. / Under de senaste decennierna har intresset för flerfasmaskiner ökat, på grund av i vissa avseenden, fördelaktiga egenskaper i jämförelse med traditionella trefasmaskiner. En väl genomförd modellering av flerfasmaskiner möjliggör högre grader av frihet givet förmågan att kontrollera frekvensplan av högre ordning. Denna funktion är av särskilt intresse inom parameteruppskattning, då det kan ge möjligheter att implementera metoder som är omöjliga i trefas maskiner. En modell av en verklig sexfasmaskin, byggd för en marin tillämpning och med ett givet styrsystem, har skapats i MATLAB/Simulink. Modellen tar hänsyn till ickelinjära förhållanden, korskopplingar och mättning. Den inkluderar även maskinens egenskaper i det fundamentala frekvensplanet och de två nästkommande frekvensplanen av högre ordning. Statorresistansen och permanentmagneternas sammanlänkade flöden uppskattas i realtid för olika driftsförhållanden. Det visar sig att statorresistansen kan uppskattas noggrant genom inmatning av en DC testsignal i högsta ordningens frekvensplan vilket minimerar momentrippel och extra förluster. Permanentmagneternas flöden kan uppskattas noggrant genom beräkning av den reaktiva effekten i det fundamentala frekvensplanet som är opåverkat av de ovan nämnda testsignalerna.
|
5 |
Energy Usage Evaluation and Condition Monitoring for Electric Machines using Wireless Sensor NetworksLu, Bin 16 November 2006 (has links)
Energy usage evaluation and condition monitoring for electric machines are important in industry for overall energy savings. Traditionally these functions are realized only for large motors in wired systems formed by communication cables and various types of sensors. The unique characteristics of the wireless sensor networks (WSN) make them the ideal wireless structure for low-cost energy management in industrial plants.
This work focuses on developing nonintrusive motor-efficiency-estimation methods, which are essential in the wireless motor-energy-management systems in a WSN architecture that is capable of improving overall energy savings in U.S. industry.
This work starts with an investigation of existing motor-efficiency-evaluation methods. Based on the findings, a general approach of developing nonintrusive efficiency-estimation methods is proposed, incorporating sensorless rotor-speed detection, stator-resistance estimation, and loss estimation techniques. Following this approach, two new methods are proposed for estimating the efficiencies of in-service induction motors, using air-gap torque estimation and a modified induction motor equivalent circuit, respectively. The experimental results show that both methods achieve accurate efficiency estimates within ¡À2-3% errors under normal load conditions, using only a few cycles of input voltages and currents. The analytical results obtained from error analysis agree well with the experimental results.
Using the proposed efficiency-estimation methods, a closed-loop motor-energy-management scheme for industrial plants with a WSN architecture is proposed. Besides the energy-usage-evaluation algorithms, this scheme also incorporates various sensorless current-based motor-condition-monitoring algorithms. A uniform data interface is defined to seamlessly integrate these energy-evaluation and condition-monitoring algorithms. Prototype wireless sensor devices are designed and implemented to satisfy the specific needs of motor energy management. A WSN test bed is implemented. The applicability of the proposed scheme is validated from the experimental results using multiple motors with different physical configurations under various load conditions. To demonstrate the validity of the measured and estimated motor efficiencies in the experiments presented in this work, an in-depth error analysis on motor efficiency measurement and estimation is conducted, using maximum error estimation, worst-case error estimation, and realistic error estimation techniques. The conclusions, contributions, and recommendations are summarized at the end.
|
6 |
Real-time detection of stator resistance unbalances in three phase drives / Realtids detektering av obalanser i statorsmotstånd i trefasiga enheterSingh, Bhanu Pratap January 2020 (has links)
An estimated 30% of the faults in Induction Machine (IM) are related to its stator. These faults are mostly in the form of an Inter-Turn Short Circuit (ITSC) fault i.e., when two winding inside the stator of IM are shorted due to insulation failure. However, ITSC fault can be avoided by detecting them in advance and then scheduling the maintenance of the IM. This thesis studies two methods for detecting this incipient ITSC fault in a three-phase IM and then estimating the stator resistance unbalance due to the ITSC fault. The first method is based on the asymmetry caused in the IM by the ITSC fault. As a result of this asymmetry, the negative sequence components of the stator voltages and the stator currents are generated inside the IM. A healthy IM also have these negative sequence components due to the manufacturing process and the supply voltage unbalances. The characteristics and the compensation methods of these negative sequence components in a healthy IM are discussed. The results show that after compensating the negative sequence components in a healthy machine, they can be used for detecting an ITSC fault and then to calculate the fault quantities as well as the stator resistance unbalances. The second method for detecting an ITSC fault is based on analysing the stator resistance unbalances. A three-phase drive is used to inject DC voltage in the stationary reference frame. The DC current generated by this DC voltage is measured and then by applying Ohm’s law stator phase resistances are calculated. In a healthy IM, the phase resistances are balanced. However, in case of ITSC fault in any of the phases, the phase resistance of that phase deviates from those of the other two phases which can be utilized for detecting ITSC fault. / Uppskattningsvis 30% av alla fel i induktionsmaskiner (IM) är kopplad till dess stator. Dessa fel är i huvudsak Inter-Turn Short Circuit (ITSC)-fel, dvs. två lindningar inom IM:ens stator blir kortsluta pga. ett isoleringsfel. Emellertid kan man undvika ITSC-fel genom att detektera dem i förhand och planera underhåll. Det här examensarbetet undersöker två metoder för att detektera ett förestående ITSC-fel i en tre-fas IM. Den första metoden är baserad på asymmetrin i IM:er pga. ITSC-felet. Resultatet av den här asymmetrin är att en negativ sekvens genereras i IM:ens statorspänning och statorström. En oskadad IM kan också visa dessa negativa sekvenser pga. tillverksprocessen och statorspänningsobalanser. Egenskaperna och kompensationsmetoderna för dessa negativa sekvenser i en oskadad IM kommer att diskuteras. Resultaten visar att efter kompenseringen av de negativa sekvenserna i en oskadad IM, kan de användas för att detektera ITSC-fel och efteråt för att beräkna felstorheter och även statormotståndobalanser. Den andra metoden för att detektera ITSC-fel är baserad på en undersökning av statormotståndobalanser. Ett tre-fas-drivsystem används för att injektera likspänning i den stationära referensramen. Likströmmen som följer av denna likspänning mäts och statorfasmotstånden beräkna efteråt med Ohms lag. I en oskadad IM är fasmotstånden balanserade. Däremot, när ett ITSC-fel uppstår i en fas, avviker fasmotståndet i den felaktiga fasen från de andra två fasernas, vilket kan användas för att detektera ITSC-fel.
|
Page generated in 0.0609 seconds