• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 14
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle du complexe NF45-NF90 dans la régulation post-transcriptionnelle du cycle cellulaire

Nourreddine, Sami 05 1900 (has links)
Le cycle cellulaire eucaryote se divise en une série de phases ordonnées qui ont pour finalité la division cellulaire. Ce processus est primordial dans la prolifération des cellules normales et le développement, mais il est aussi très fortement dérégulé dans les cellules cancéreuses. Les phases de cycle cellulaire sont différenciées par les tâches effectuées au cours de celles-ci et requièrent l’expression de gènes spécifiques à chacune des phases. Chez l’humain, il existe environ 1000 gènes dont l’expression est dépendante de la phase du cycle cellulaire. Les mécanismes impliqués dans le contrôle de l’expression périodique de ces gènes ont principalement été étudié aux niveaux transcriptionnels et post-traductionnels. Cependant, la régulation post-transcriptionnelle demeure encore peu étudiée dans le contexte du cycle cellulaire, malgré son importance dans le contrôle de l’expression génique. Afin d’identifier des régulateurs post-transcriptionnels du cycle cellulaire, nous avons analysé la corrélation existante entre l’expression des gènes périodiques du cycle cellulaire et celle de 687 protéines liant l’ARN (RNA-binding protein; RBP) sur plus de 1000 spécimens de cancer du sein. Cette analyse nous a permis d’identifier 39 RBP dont les protéines Nuclear Factor 45 (NF45) et Nuclear Factor 90 (NF90). NF45 et NF90 forment un hétérodimère qui lie des structures d’ARN double brin et qui contrôle l’expression génique à différents niveaux de l’épissage à la stabilisation des ARNm. La déplétion de NF45 ou NF90 inhibe la prolifération des cellules en induisant de nombreux défauts mitotiques qui résultent d’une baisse d’expression de plusieurs gènes essentiels à la mitose. D’autre part, à l’aide d’une méthode de protéomique nous avons réalisé l’interactome du complexe NF45-NF90 afin de déterminer à quels niveaux ce mécanisme de régulation prend place et avons identifié une interaction avec le complexe Staufen1/2-UPF1 responsable de la dégradation des ARNm. Ainsi, les niveaux d’expression de certains ARNm importants à la mitose sont conditionnés par une compétition entre NF45-NF90 et Staufen1/2 pour la liaison à ces ARNm. Dans une seconde étude, nous avons recherché les régulations potentielles sur NF45 et NF90 au cours du cycle cellulaire et avons i découvert des évènements de phosphorylation sur NF90 prenant place en phase G2/M. Nous avons montré que cette phosphorylation est médiée par CDK1, et l’activation de CDK1 provoque la translocation de NF90 du noyau vers le cytoplasme. Enfin, au vu de l’implication du complexe NF45-NF90 dans la prolifération des cellules cancéreuses, nous avons réalisé un essai de criblage à haut débit de 120 000 molécules sur l’interaction entre NF45 et NF90. Cet essai nous as permis d’identifier plus de plus 1000 molécules pouvant potentiellement interférer avec le complexe NF45-NF90. Parmi celles-ci, nous avons retrouvé 14 molécules de la famille des glycosides cardiaques, qui sont des composés antiarythmiques mais qui par ailleurs possèdent des effets anticancéreux décrits depuis plusieurs décennies. De façon intéressante, le traitement des cellules à ces composés mène à un phénotype mitotique très similaire à la déplétion de NF45 ou NF90, suggérant une implication du complexe NF45-NF90 dans les effets antimitotiques induits par les glycosides cardiaques. En conclusion, ces études nous ont permis d’éclairer le rôle du complexe NF45-NF90 dans la prolifération cellulaire, mais aussi d’approfondir la compréhension des différents mécanismes impliqués dans le contrôle du cycle cellulaire. / The eukaryotic cell cycle is divided into a series of ordered phases leading to cell division. This process is essential in normal cell proliferation and development, but it is also largely deregulated in cancer cells. Cell cycle phases are differentiated by the different molecular processes performed and expression of specific genes at each phase is determinant. In humans, there are approximately 1000 genes that are periodically expressed throughout the cell cycle. Control of this periodic expression has been well characterized at the transcriptional and post-translational levels. However, post-transcriptional regulation remains little studied in the context of the cell cycle, despite its importance in the control of gene expression. In order to identify post-transcriptional cell cycle regulators, we have correlated the expression of cell cycle genes with the expression of 687 RNA-binding proteins (RBP) in more than 1000 breast cancer specimens. This analysis allowed us to identify 39 RBPs, including Nuclear Factor 45 (NF45) and Nuclear Factor 90 (NF90). NF45 and NF90 form a heterodimer that binds double-stranded RNA structures and controls gene expression at various levels, from splicing to stabilization of mRNAs. Depletion of NF45 or NF90 inhibits cell proliferation by inducing several mitotic defects resulting from decreased expression of many genes essential for mitosis. In order to determine at which levels this regulatory mechanism takes place, we performed a proteomic method to identifyNF45-NF90 proximal interactors and identified an interaction with the Staufen1/2-UPF1 complex responsible for the degradation of mRNAs. Thus, it appears that the expression of some mitotic mRNAs is controlled by a competition between NF45-NF90 and Staufen1/2 for binding to these mRNAs. In a second study, we looked for potential regulations on NF45 and NF90 during the cell cycle and found phosphorylation events on NF90 taking place in the G2/M phase of the cell cycle. We have shown that this phosphorylation is CDK1-dependent, and that CDK1 activation leads to the translocation of NF90 from the nucleus to the cytoplasm. Finally, based on the involvement of the NF45-NF90 complex in cancer cell proliferation, we carried out a high-throughput screening assay of 120,000 ii. Abstract ii molecules on the interaction between NF45 and NF90. This assay allowed us to identify more than 1000 molecules that could potentially interfere with the NF45-NF90 complex. Amongst them, we found 14 molecules belonging to the cardiac glycoside family, which are antiarrhythmic drugs that also display anticancer effects. Interestingly, treatment with cardiac glycosides leads to a mitotic phenotype very similar to the depletion of NF45 or NF90, suggesting an involvement of the NF45-NF90 complex in the antimitotic effects induced by cardiac glycosides. In conclusion, these studies have shed light on the role of the NF45-NF90 complex in cell proliferation, but also deepened our understanding of the different mechanisms involved in cell cycle control.
12

Identification des ARNm liés par les protéines Staufen de mammifères et caractérisation des déterminants structuraux à la base de l'interaction

Furic, Luc January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
13

Identification de modifications post-traductionnelles de Staufen1 et étude de leur fonction régulatrice

Boulay, Karine 08 1900 (has links)
La régulation post-transcriptionnelle joue un rôle de premier plan dans le contrôle fin de l’expression génique en permettant une modulation de la synthèse de protéines dans le temps et l’espace, en fonction des besoins de la cellule. Ainsi, des protéines reconnaissant des éléments d’ARN présents sur des transcrits peuvent influencer toutes les étapes de leur existence, soit leur épissage, leur export nucléaire, leur localisation subcellulaire, leur traduction et leur dégradation. Staufen1 (Stau1) est un membre de la famille des protéines liant l’ARN double-brin qui contribue à la régulation post-transcriptionnelle par son implication dans des mécanismes qui vont promouvoir l’épissage alternatif, le transport, la dé-répression de la traduction et l’induction de la dégradation d’ARN messagers (ARNm) spécifiques. L’identité des cibles potentielles de Stau1 est maintenant connue puisqu’une étude à l’échelle du génome a montré que la protéine s’associe à près de 7% du transcriptome des cellules HEK293T. Ces ARNm se classent dans un large éventail de catégories fonctionnelles, mais il est tout de même intéressant de noter qu’une grande proportion d’entre eux code pour des protéines reliées au métabolisme cellulaire et à la régulation de processus cellulaires. En considérant toutes ces informations, nous avons émis l’hypothèse que les différentes activités de Stau1 puissent être modulées afin de contrôler adéquatement l’expression des transcrits liés par la protéine. Dans la mesure où certains ARNm faisant partie des complexes définis par la présence de Stau1 codent pour des régulateurs clés de la prolifération cellulaire, nous avons voulu examiner si l’expression de la protéine varie au cours du cycle de division cellulaire. Nous avons montré que l’abondance de Stau1 est maximale en début de mitose et qu’elle diminue ensuite lorsque les cellules complètent la division cellulaire. Nous avons ensuite découvert que cette baisse d’expression de Stau1 en sortie de mitose dépend du complexe promoteur d’anaphase/cyclosome (APC/C). En soutien à l’idée que Stau1 soit une cible de cette ubiquitine ligase de type E3, nous avons de plus démontré que Stau1 est ubiquitiné et dégradé par le protéasome. Ce contrôle des niveaux de Stau1 semble important puisque la surexpression de la protéine retarde la sortie de mitose et entraîne une diminution importante de la prolifération cellulaire. Par ailleurs, nous avons supposé que les différentes fonctions de Stau1 puissent également être sujettes à une régulation. Compte tenu que les activités de nombreuses protéines liant l’ARN peuvent être contrôlées par des modifications post-traductionnelles telles que la phosphorylation, nous avons voulu tester la possibilité que Stau1 soit phosphorylé. L’immunopurification de Stau1 et son analyse par spectrométrie de masse nous a permis d’identifier trois phosphosites dans la protéine. L’évaluation du rôle de ces événements de phosphorylation à l’aide de mutants phoshomimétiques ou non-phoshorylables a révélé que la modification de Stau1 pourrait compromettre son association à la protéine UPF1. Comme cette interaction est nécessaire pour déstabiliser les transcrits liés par Stau1, nos résultats suggèrent fortement que la fonction de Stau1 dans la dégradation d’ARNm est régulée négativement par sa phosphorylation. Toutes ces données mettent en lumière l’importance des modifications post-traductionnelles telles que l’ubiquitination et la phosphorylation dans la modulation de l’expression et des fonctions de Stau 1. Somme toute, il est vraisemblable que ces mécanismes de contrôle puissent avoir un impact significatif sur le destin des ARNm liés par Stau1, particulièrement dans un contexte de progression dans le cycle cellulaire. / Post-transcriptional regulation plays a major role in the fine tuning of gene expression by allowing a modulation of protein synthesis in space and time, according to cellular requirements. For instance, proteins recognizing RNA elements on transcripts can influence all the steps of their existence, such as their splicing, nuclear export, subcellular localization, translation and degradation. Staufen1 (Stau1) is a member of the double-stranded RNA-binding protein family that contributes to the post-transcriptional regulation of gene expression by its involvement in mechanisms that promote alternative splicing, transport, de-repression of translation and decay of specific messenger RNAs (mRNAs). The identity of potential Stau1 targets is now known as genome-wide analyses have shown that the protein is associated with about 7% of the HEK293T cell transcriptome. Although these mRNAs are classified in a broad range of functional categories, a large proportion of them code for proteins related to cellular metabolism and regulation of cellular processes. Considering all this information, we hypothesized that the different activities of Stau1 may be modulated in order to control appropriately the expression of Stau1-bound mRNAs. Since some of the mRNAs that are part of Stau1-containing complexes encode key regulators of cell proliferation, we wanted to examine whether Stau1 expression fluctuates during the cell division cycle. We showed that Stau1 abundance peaks at the onset of mitosis and then decreases as cells complete division. We then found that Stau1 down-regulation in mitosis exit is mediated by the anaphase promoting complex/cyclosome (APC/C). To support the idea that Stau1 is a target of this E3-ubiquitin ligase, we further demonstrated that Stau1 is ubiquitinated and degraded by the proteasome. The importance of controlling Stau1 levels during the cell cycle is underscored by the observation that its overexpression delays mitotic exit and impairs cell proliferation. Furthermore, we speculated that Stau1 different functions may also be regulated. In the view that the activities of numerous RNA-binding proteins can be controlled by post-translational modifications such as phosphorylation, we tested the possibility that Stau1 is phosphorylated. Mass spectrometry analysis of immunopurified Stau1 allowed the identification of three phosphosites in this protein. Assessment of the role of these phosphorylation events using phosphomimetic or non-phosphorylatable mutants revealed that Stau1 phosphorylation may compromise its association with Upf1. Because this interaction is necessary to elicit the destabilisation of Stau1-bound RNAs, our results strongly suggest that Stau1 function in mRNA decay is negatively regulated by its phosphorylation. Collectively, these data highlight the importance of post-translational modifications such as ubiquitination and phosphorylation in the modulation of Stau1 expression and functions. Overall, the mechanisms that control Stau1 are likely to have a significant impact on the fate of Stau1-bound mRNAs, especially in the context of cell cycle progression.
14

Identification de modifications post-traductionnelles de Staufen1 et étude de leur fonction régulatrice

Boulay, Karine 08 1900 (has links)
La régulation post-transcriptionnelle joue un rôle de premier plan dans le contrôle fin de l’expression génique en permettant une modulation de la synthèse de protéines dans le temps et l’espace, en fonction des besoins de la cellule. Ainsi, des protéines reconnaissant des éléments d’ARN présents sur des transcrits peuvent influencer toutes les étapes de leur existence, soit leur épissage, leur export nucléaire, leur localisation subcellulaire, leur traduction et leur dégradation. Staufen1 (Stau1) est un membre de la famille des protéines liant l’ARN double-brin qui contribue à la régulation post-transcriptionnelle par son implication dans des mécanismes qui vont promouvoir l’épissage alternatif, le transport, la dé-répression de la traduction et l’induction de la dégradation d’ARN messagers (ARNm) spécifiques. L’identité des cibles potentielles de Stau1 est maintenant connue puisqu’une étude à l’échelle du génome a montré que la protéine s’associe à près de 7% du transcriptome des cellules HEK293T. Ces ARNm se classent dans un large éventail de catégories fonctionnelles, mais il est tout de même intéressant de noter qu’une grande proportion d’entre eux code pour des protéines reliées au métabolisme cellulaire et à la régulation de processus cellulaires. En considérant toutes ces informations, nous avons émis l’hypothèse que les différentes activités de Stau1 puissent être modulées afin de contrôler adéquatement l’expression des transcrits liés par la protéine. Dans la mesure où certains ARNm faisant partie des complexes définis par la présence de Stau1 codent pour des régulateurs clés de la prolifération cellulaire, nous avons voulu examiner si l’expression de la protéine varie au cours du cycle de division cellulaire. Nous avons montré que l’abondance de Stau1 est maximale en début de mitose et qu’elle diminue ensuite lorsque les cellules complètent la division cellulaire. Nous avons ensuite découvert que cette baisse d’expression de Stau1 en sortie de mitose dépend du complexe promoteur d’anaphase/cyclosome (APC/C). En soutien à l’idée que Stau1 soit une cible de cette ubiquitine ligase de type E3, nous avons de plus démontré que Stau1 est ubiquitiné et dégradé par le protéasome. Ce contrôle des niveaux de Stau1 semble important puisque la surexpression de la protéine retarde la sortie de mitose et entraîne une diminution importante de la prolifération cellulaire. Par ailleurs, nous avons supposé que les différentes fonctions de Stau1 puissent également être sujettes à une régulation. Compte tenu que les activités de nombreuses protéines liant l’ARN peuvent être contrôlées par des modifications post-traductionnelles telles que la phosphorylation, nous avons voulu tester la possibilité que Stau1 soit phosphorylé. L’immunopurification de Stau1 et son analyse par spectrométrie de masse nous a permis d’identifier trois phosphosites dans la protéine. L’évaluation du rôle de ces événements de phosphorylation à l’aide de mutants phoshomimétiques ou non-phoshorylables a révélé que la modification de Stau1 pourrait compromettre son association à la protéine UPF1. Comme cette interaction est nécessaire pour déstabiliser les transcrits liés par Stau1, nos résultats suggèrent fortement que la fonction de Stau1 dans la dégradation d’ARNm est régulée négativement par sa phosphorylation. Toutes ces données mettent en lumière l’importance des modifications post-traductionnelles telles que l’ubiquitination et la phosphorylation dans la modulation de l’expression et des fonctions de Stau 1. Somme toute, il est vraisemblable que ces mécanismes de contrôle puissent avoir un impact significatif sur le destin des ARNm liés par Stau1, particulièrement dans un contexte de progression dans le cycle cellulaire. / Post-transcriptional regulation plays a major role in the fine tuning of gene expression by allowing a modulation of protein synthesis in space and time, according to cellular requirements. For instance, proteins recognizing RNA elements on transcripts can influence all the steps of their existence, such as their splicing, nuclear export, subcellular localization, translation and degradation. Staufen1 (Stau1) is a member of the double-stranded RNA-binding protein family that contributes to the post-transcriptional regulation of gene expression by its involvement in mechanisms that promote alternative splicing, transport, de-repression of translation and decay of specific messenger RNAs (mRNAs). The identity of potential Stau1 targets is now known as genome-wide analyses have shown that the protein is associated with about 7% of the HEK293T cell transcriptome. Although these mRNAs are classified in a broad range of functional categories, a large proportion of them code for proteins related to cellular metabolism and regulation of cellular processes. Considering all this information, we hypothesized that the different activities of Stau1 may be modulated in order to control appropriately the expression of Stau1-bound mRNAs. Since some of the mRNAs that are part of Stau1-containing complexes encode key regulators of cell proliferation, we wanted to examine whether Stau1 expression fluctuates during the cell division cycle. We showed that Stau1 abundance peaks at the onset of mitosis and then decreases as cells complete division. We then found that Stau1 down-regulation in mitosis exit is mediated by the anaphase promoting complex/cyclosome (APC/C). To support the idea that Stau1 is a target of this E3-ubiquitin ligase, we further demonstrated that Stau1 is ubiquitinated and degraded by the proteasome. The importance of controlling Stau1 levels during the cell cycle is underscored by the observation that its overexpression delays mitotic exit and impairs cell proliferation. Furthermore, we speculated that Stau1 different functions may also be regulated. In the view that the activities of numerous RNA-binding proteins can be controlled by post-translational modifications such as phosphorylation, we tested the possibility that Stau1 is phosphorylated. Mass spectrometry analysis of immunopurified Stau1 allowed the identification of three phosphosites in this protein. Assessment of the role of these phosphorylation events using phosphomimetic or non-phosphorylatable mutants revealed that Stau1 phosphorylation may compromise its association with Upf1. Because this interaction is necessary to elicit the destabilisation of Stau1-bound RNAs, our results strongly suggest that Stau1 function in mRNA decay is negatively regulated by its phosphorylation. Collectively, these data highlight the importance of post-translational modifications such as ubiquitination and phosphorylation in the modulation of Stau1 expression and functions. Overall, the mechanisms that control Stau1 are likely to have a significant impact on the fate of Stau1-bound mRNAs, especially in the context of cell cycle progression.

Page generated in 0.1632 seconds