Spelling suggestions: "subject:"steam power plant"" "subject:"steam power slant""
1 |
Modelagem e simulação de uma instalação propulsora a vapor. / Moodling and simulation of a steam power plant.Morishita, Helio Mitio 12 July 1979 (has links)
Este trabalho apresenta o estudo da dinâmica de uma instalação propulsora a vapor através da técnica da modelagem e simulação. O modelo matemático é obtido das Leis da Termodinâmica e dos conceitos básicos da mecânica dos fluídos e transferência de calor, e a simulação é efetuada em um computador digital. Inicialmente cada componente do ciclo é modelado individualmente, determinando-se as suas variáveis de estado, de entrada e de saída. A seguir o modelo é simulado para analisar a influência dos diversos parâmetros nas respostas do elemento. O modelo matemático da instalação propulsora a vapor é obtido agrupando-se convenientemente os modelos dos vários componentes do ciclo. Com isso obtêm-se um sistema de 47ª ordem que pode simular diversos casos de interesse real. Neste trabalho são analisadas as respostas do ciclo para dois casos. A primeira corresponde ao fechamento parcial da válvula de controle da turbina e a segunda ao corte na vazão de óleo combustível. / This paper presents a study of the dynamics of a steam power plant using techniques of modelling and simulation. The mathematical model derives form the laws of Thermodynamics and basic concepts of fluid mechanics and heat transfer; the simulation is carried out in a digital computer. Each component is first modelled individually, and its state, input and output variables are determined. The model is then simulated for the analysis of the influence of the various parameters in the responses of the component. The mathematical model of the complete power plant is constructed by the convenient grouping of the various component models of the cycle. Thereby a 47th order system is obtained, which can simulate various cases of interest. The cycle\'s response for two cases are analysed. The first case correspond to the partial closing of the turbine control valve and the second to the fuel flow interruption .
|
2 |
Modelagem e simulação de uma instalação propulsora a vapor. / Moodling and simulation of a steam power plant.Helio Mitio Morishita 12 July 1979 (has links)
Este trabalho apresenta o estudo da dinâmica de uma instalação propulsora a vapor através da técnica da modelagem e simulação. O modelo matemático é obtido das Leis da Termodinâmica e dos conceitos básicos da mecânica dos fluídos e transferência de calor, e a simulação é efetuada em um computador digital. Inicialmente cada componente do ciclo é modelado individualmente, determinando-se as suas variáveis de estado, de entrada e de saída. A seguir o modelo é simulado para analisar a influência dos diversos parâmetros nas respostas do elemento. O modelo matemático da instalação propulsora a vapor é obtido agrupando-se convenientemente os modelos dos vários componentes do ciclo. Com isso obtêm-se um sistema de 47ª ordem que pode simular diversos casos de interesse real. Neste trabalho são analisadas as respostas do ciclo para dois casos. A primeira corresponde ao fechamento parcial da válvula de controle da turbina e a segunda ao corte na vazão de óleo combustível. / This paper presents a study of the dynamics of a steam power plant using techniques of modelling and simulation. The mathematical model derives form the laws of Thermodynamics and basic concepts of fluid mechanics and heat transfer; the simulation is carried out in a digital computer. Each component is first modelled individually, and its state, input and output variables are determined. The model is then simulated for the analysis of the influence of the various parameters in the responses of the component. The mathematical model of the complete power plant is constructed by the convenient grouping of the various component models of the cycle. Thereby a 47th order system is obtained, which can simulate various cases of interest. The cycle\'s response for two cases are analysed. The first case correspond to the partial closing of the turbine control valve and the second to the fuel flow interruption .
|
3 |
Modelagem de central termelétrica a vapor para simulação dinâmicaOliveira Junior, Valter Barbosa de 28 August 2009 (has links)
Made available in DSpace on 2016-12-23T14:07:27Z (GMT). No. of bitstreams: 1
Dissertacao de Valter Barbosa de Oliveira Junior.pdf: 5244754 bytes, checksum: 0e5a4d27ed2f4da1d96089d0041ddaaa (MD5)
Previous issue date: 2009-08-28 / Centrais termelétricas a vapor são capazes de utilizar biomassa e fazer o reaproveitamento de resíduos agrícolas, resíduos urbanos ou subprodutos industriais para produzir energia elétrica, condicionadas aos seus projetos. Este trabalho tem como objetivos representar, por meio de modelos matemáticos, os principais componentes que constituem o circuito de vapor de uma planta de geração termelétrica a vapor, com foco em caldeira aquatubular, e apresentar uma avaliação dos diversos modelos encontrados na literatura de referência, visando dar suporte ao desenvolvimento de aplicações de simulação dinâmica. Os modelos apresentados abrangem a conversão da energia térmica em energia mecânica e a conversão da energia mecânica em energia elétrica. O conhecimento das características das respostas dinâmicas dos componentes de uma central termelétrica é importante para a análise de estabilidade e para o projeto do sistema de controle. A partir dos modelos dinâmicos do processo é possível a realização de testes de estratégias de controle que, interagindo com os modelos da planta, possibilitem identificar previamente o comportamento dinâmico esperado. Este trabalho também pode ser utilizado como uma referência básica para o desenvolvimento de um simulador com finalidade de treinamento de operadores, cuja aplicação possibilita que seja feita a integração total do operador aos procedimentos operacionais, antes mesmo da partida da planta, ampliando a sua capacidade de aprendizagem / Steam power plants are able to utilize biomass and make the recovering of agricultural residues, urban residues or industrial by-products to produce electric energy, conditioned to its projects. This work aims to represent by means of mathematic modeling the main components that constitute the main steam circuit of a steam power plant, with focus in drum boiler, and to present an analysis of the several models founded at the reference literature, aiming to give support to the development of dynamic simulation applications. The models embrace the conversion of thermal energy in mechanical energy and the conversion of mechanical energy in electric energy. The knowledge of the dynamic response characteristics of power plant components is important for the analysis of stability and control system design. From the dynamic model of process is possible to perform tests of control strategies that, having interaction with the plant models, allow the previous indentifying of its hoped dynamic behavior. This work may be used also as a basic reference to the development of a simulator for operators training purpose, whose application allows the operator to be fully integrated to the operational procedures, before the plant start up, increasing his learning ability
|
4 |
Simulation of thermal plant optimization and hydraulic aspects of thermal distribution loops for large campusesChen, Qiang 29 August 2005 (has links)
Following an introduction, the author describes Texas A&M University and its utilities system. After that, the author presents how to construct simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems are significantly higher than potable water distribution systems. In the second part of the report, the author presents the latest development of software called the Plant Optimization Program, which can simulate cogeneration plant operation, estimate its operation cost and provide optimized operation suggestions. The author also developed detailed simulation models for a gas turbine and heat recovery steam generator and identified significant potential savings. Finally, the author also used a steam turbine as an example to present a multi-regression method on constructing simulation models by using basic statistics and optimization algorithms. This report presents a survey of the author??s working experience at the Energy Systems Laboratory (ESL) at Texas A&M University during the period of January 2002 through March 2004. The purpose of the above work was to allow the author to become familiar with the practice of engineering. The result is that the author knows how to complete a project from start to finish and understands how both technical and nontechnical aspects of a project need to be considered in order to ensure a quality deliverable and bring a project to successful completion. This report concludes that the objectives of the internship were successfully accomplished and that the requirements for the degree of Degree of Engineering have been satisfied.
|
5 |
Design with Constructal Theory: Steam Generators, Turbines and Heat ExchangersKim, Yong Sung January 2010 (has links)
<p>This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.</p> / Dissertation
|
6 |
Simulation of thermal plant optimization and hydraulic aspects of thermal distribution loops for large campusesChen, Qiang 29 August 2005 (has links)
Following an introduction, the author describes Texas A&M University and its utilities system. After that, the author presents how to construct simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems are significantly higher than potable water distribution systems. In the second part of the report, the author presents the latest development of software called the Plant Optimization Program, which can simulate cogeneration plant operation, estimate its operation cost and provide optimized operation suggestions. The author also developed detailed simulation models for a gas turbine and heat recovery steam generator and identified significant potential savings. Finally, the author also used a steam turbine as an example to present a multi-regression method on constructing simulation models by using basic statistics and optimization algorithms. This report presents a survey of the author??s working experience at the Energy Systems Laboratory (ESL) at Texas A&M University during the period of January 2002 through March 2004. The purpose of the above work was to allow the author to become familiar with the practice of engineering. The result is that the author knows how to complete a project from start to finish and understands how both technical and nontechnical aspects of a project need to be considered in order to ensure a quality deliverable and bring a project to successful completion. This report concludes that the objectives of the internship were successfully accomplished and that the requirements for the degree of Degree of Engineering have been satisfied.
|
7 |
Utvärdering av potential för värmeåtervinning från laborationsutrustning : Möjligheten att använda en kylvattenbassäng som termiskt säsongslagerHammarström, Anton January 2018 (has links)
HETA utbildningar i Härnösand har ett ångkraftverk för undervisningssyfte som kyls ner med vatten från en underjordisk bassäng på cirka 329 m³. Syftet med detta examensarbete har varit att undersöka hur bassängen med spillvärmen från kraftverket kan användas som ett säsongslager i kombination med en befintlig 7,8 kW värmepump för att värma upp maskinhallen i deras laboratoriebyggnad. Ett kalkylark skapades i Microsoft Excel för att kunna genomföra beräkningarna. Då mätdata saknades skapades ett simulerat scenario baserat på temperaturstatistik och körschema för kraftverket från år 2017. Transmissionsförluster beräknades för bassängen och maskinhallen. För bassängen användes mestadels observationsdata och kännedom hos personalen, medan maskinhallens isolering i huvudsak fick uppskattas efter byggår. Resultatet blev att värmepumpen med aktuellt körschema kunde täcka cirka 45 % av maskinhallens årliga uppvärmningsbehov. Av de 276 GJ som tillfördes genom kylning av ångkraftverket under ett år beräknades endast 2,7 % kunna utnyttjas till uppvärmning av maskinhallen, på grund av för lite isolering i bassängen. De största begränsningarna för högre täckning och större nyttjande av spillvärmen bedömdes vara placeringen i tid av kraftverkets körningar, och värmepumpens effekt. Om körningarna skulle förläggas i huvudsak till november–april och värmepumpen ersättas med en på 10 kW, skulle 74 % av värmebehovet kunna täckas och över 18 % av spillvärmen utnyttjas. Andra saker som förbättrad isolering i bassängen och större vattenvolym bedömdes också kunna förbättra bassängens kapacitet som energilager. / HETA Education in Härnösand has a steam power plant for educational purposes which is cooled with water from a 329 m³ underground basin. The purpose of this thesis has been to examine how the basin with the waste heat can be used as seasonal thermal energy storage with an existing 7.8 kW heat pump in order to heat the machine room of their lab building. A spreadsheet was created in Microsoft Excel in order to carry out the calculations. As no measurement data was available, a simulated scenario was created based on temperature statistics and the operating schedule for the power plant from the year 2017. Transmission losses were calculated for the basin and the machine room. For the basin, mostly observational data and knowledge among the staff were used, while the insulation for the machine room mainly had to be estimated based on the construction year. The result was that the heat pump, with the current operating schedule, could cover around 45% of the yearly heating demand of the machine room. Of the 276 GJ that were added through cooling of the power plant during a year, according to calculations, only 2,7% could be used for heating the machine hall, due to lacking insulation in the basin. The greatest limitations for achieving a higher heating coverage and a greater usage of the waste heat were assessed to be the placement in time of the power plant runs, and the effect of the heat pump. If the runs would be placed mainly in November–April, and the heat pump replaced with a 10 kW one, around 74% of the heating demand could be covered and 18 % of the waste heat used. Other things, such as increased insulation in the basin and larger water volume were also assessed to be able to increase the capacity of the basin as heat storage.
|
Page generated in 0.0478 seconds