• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 48
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 52
  • 43
  • 43
  • 41
  • 27
  • 25
  • 24
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Reforma a vapor catal?tica do metano: Otimiza??o da produ??o e seletividade em hidrog?nio por absor??o in situ do CO2 produzido

Ces?rio, Moises R?molos 29 April 2013 (has links)
Made available in DSpace on 2014-12-17T15:42:20Z (GMT). No. of bitstreams: 1 MoisesRC_TESE.pdf: 5138295 bytes, checksum: 2244f5424aa2282bc24737aca40cf3d2 (MD5) Previous issue date: 2013-04-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Topics of research related to energy and environment have significantly grown in recent years, with the need of its own energy as hydrogen. More particularly, numerous researches have been focused on hydrogen as energy vector. The main portion of hydrogen is presently obtained by reforming of methane or light hydrocarbons (steam, oxy, dry or auto reforming). During the methane steam reforming process the formation of CO2 undesirable (the main contributor to the greenhouse effect) is observed. Thus, an oxide material (sorbent) can be used to capture the CO2 generated during the process and simultaneously shifting the equilibrium of water gas shift towards thermodynamically more favorable production of pure hydrogen. The aim of this study is to develop a material with dual function (catalyst/sorbent) in the reaction of steam reforming of methane. CaO is well known as CO2 sorbent due to its high efficiency in reactions of carbonation and easy regeneration through calcination. However the kinetic of carbonation decreases quickly with time and carbonation/calcination cycles. A calcium aluminate (Ca12Al14O33) should be used to avoid sintering and increase the stability of CaO sorbents for several cycles. Nickel, the industrial catalyst choice for steam reforming has been added to the support from different manners. These bi-functional materials (sorbent/catalyst) in different molar ratios CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) were prepared by different synthesis methodologies, among them, especially the method of microwave assisted self-combustion. Synthesis, structure and catalytic performances of Ni- CaO.Ca12Al14O33 synthesized by the novel method (microwave assisted selfcombustion) proposed in this work has not being reported yet in literature. The results indicate that CO2 capture time depends both on the CaO excess and on operating conditions (eg., temperature and H2O/CH4 ratio). To be efficient for CO2 sorption, temperature of steam reforming needs to be lower than 700 ?C. An optimized percentage corresponding to 75% of CaO and a ratio H2O/CH4 = 1 provides the most promising results since a smaller amount of water avoids competition between water and CO2 to form carbonate and hydroxide. If this competition is most effective (H2O/CH4 = 3) and would have a smaller amount of CaO available for absorption possibly due to the formation of Ca(OH)2. Therefore, the capture time was higher (16h) for the ratio H2O/CH4 = 1 than H2O/CH4 = 3 (7h) using as catalyst one prepared by impregnating the support obtained by microwave assisted self-combustion. Therefore, it was demonstrated that, with these catalysts, the CO2 sorption on CaO modifies the balance of the water gas-shift reaction. Consequently, steam reforming of CH4 is optimized, producing pure H2, complete conversion of methane and negligible concentration of CO2 and CO during the time of capture even at low temperature (650 ?C). This validates the concept of the sorption of CO2 together with methane steam reforming / T?picos de pesquisa relacionados ? energia e meio ambiente t?m crescido significativamente nos ?ltimos anos, com a necessidade de energia pr?pria como o hidrog?nio. Mais particularmente, in?meras pesquisas t?m sido focadas em hidrog?nio como vetor energ?tico. A maior parte de hidrog?nio ? atualmente obtida por reforma do metano ou hidrocarbonetos (vapor, seco, oxi ou auto reforma). Durante o processo de reforma a vapor do metano, a forma??o de CO2 indesej?vel (principal contribuinte ao efeito estufa) ? observada. Dessa forma, um material ?xido (absorbante) pode ser usado para capturar o CO2 gerado durante o processo e ao mesmo tempo deslocar o equil?brio da rea??o de deslocamento g?s-?gua no sentido termodin?mico mais favor?vel ? produ??o de hidrog?nio puro. O objetivo desse estudo consiste em desenvolver um material com dupla fun??o (catalisador/absorbante) na rea??o de reforma a vapor do metano. CaO ? bem conhecido como absorbante do CO2 devido ? sua elevada efici?ncia em rea??es de carbonata??o e f?cil regenera??o por interm?dio da calcina??o. No entanto, a cin?tica de carbonata??o decresce rapidamente em fun??o do tempo e ciclos de carbonata??o e calcina??o. Um aluminato de c?lcio (Ca12Al14O33) deve ser utilizado para evitar a sinteriza??o e aumentar a estabilidade de absorbantes de CaO durante v?rios ciclos. O n?quel, o catalisador industrial escolhido para a reforma a vapor do metano foi adicionado ao suporte em diferentes maneiras. Estes materiais bi-funcionais (absorbante/catalisador) em diferentes raz?es molares CaO.Ca12Al14O33 (48:52, 65:35, 75:25, 90:10) foram preparados por diferentes m?todos de s?ntese, dentre eles, com destaque o m?todo de autocombust?o assistida por microondas (AAM). S?ntese, estrutura e desempenho catal?tico de Ni- CaO.Ca12Al14O33 sintetizado pelo novo m?todo (autocombust?o assistida por microondas) proposto neste trabalho n?o t?m sido reportado na literatura. Os resultados indicam que o tempo de captura de CO2 depende tanto do excesso de CaO quanto das condi??es de funcionamento (como, por exemplo, a temperatura e a raz?o H2O/CH4). Para ser eficiente na absor??o de CO2, a temperatura de reforma a vapor deve ser inferior a 700 ?C. Uma percentagem otimizada correspondente a 75% de CaO e uma raz?o (H2O/CH4 = 1) fornece os resultados mais prometedores uma vez que uma menor quantidade de ?gua evita uma competi??o entre a ?gua e CO2 para a forma??o de carbonato e hidr?xido. Se esta competi??o for mais efetiva (H2O/CH4 = 3) ter-se-ia uma menor quantidade de CaO dispon?vel para absor??o possivelmente devido ? forma??o de Ca(OH)2. Por isso, o tempo de captura foi maior (16h) para a raz?o H2O/CH4 = 1 do que H2O/CH4 = 3 (7h) usando como catalisador reacional aquele preparado por impregna??o do suporte obtido por AAM. Portanto, foi demonstrado que, com esses catalisadores, a absor??o de CO2 por CaO modifica o equil?brio da rea??o de deslocamento g?s?gua. Consequentemente, a reforma a vapor de CH4 ? otimizada, produzindo hidrog?nio puro, concentra??es desprez?veis de CO2 e CO durante o tempo de captura, mesmo a baixa temperatura (650 ? C). Isso confirma o conceito de absor??o in situ de CO2 durante a reforma a vapor do metano
122

Ανθεκτικά στην εναπόθεση άνθρακα διμεταλλικά ανοδικά ηλεκτρόδια κυψελίδων καυσίμου με στερεό ηλεκτρολύτη / Tolerant to carbon deposition bimetallic electrodes for solid oxide fuel cells

Γαβριελάτος, Ηλίας 14 January 2009 (has links)
Η τεχνολογία κυψελίδων καυσίμου στερεού ηλεκτρολύτη είναι αρκετά ελκυστική για την συμπαραγωγή αερίου σύνθεσης και ηλεκτρικής ενέργειας. Το κυριότερο μειονέκτημα είναι η εναπόθεση άνθρακα στο ανοδικό ηλεκτρόδιο λόγω της διασπαστικής ρόφησης του CH4. Σε μια θεωρητική μελέτη, οι Besenbacher et al συμπέραναν ότι η παρουσία μικρής ποσότητας Αu σε υποστηριγμένο καταλύτη Ni οδηγεί σε σημαντική μείωση την εναπόθεση άνθρακα. Σε αντίστοιχα συμπεράσματα κατέληξαν και οι Τριανταφυλλόπουλος και Νεοφυτίδης μελετώντας τα είδη του άνθρακα που δημιουργούνται πάνω στο Ni(1%at Au)-YSZ κατά την διασπαστική ρόφηση του μεθανίου. Στην παρούσα εργασία μελετήθηκε η ηλεκτροχημική δραστικότητα διμεταλλικών ηλεκτροδίων Ni(Au1%at)-YSZ και Ni(Ag1%at)-YSZ για την μερική οξείδωση του μεθανίου καθώς και για την εσωτερική αναμόρφωση του μεθανίου με ατμό σε κυψελίδες καυσίμου στερεού ηλεκτρολύτη. Τα ηλεκτρόδια παρασκευάστηκαν με τη μέθοδο της επιτόπου πυρανάφλεξης (in situ combustion synthesis, μέθοδος σχετικά χαμηλής θερμοκρασίας που δημιουργεί νανοδομημένα ηλεκτρόδια) και μελετήθηκαν ως προς την ηλεκτροκαταλυτική συμπεριφορά τους για την εσωτερική αναμόρφωση του μεθανίου με ατμό. Τα πειράματα θερμοσταθμικής ανάλυσης, τα κινητικά πειράματα καθώς και οι ηλεκτροχημικές μετρήσεις που πραγματοποιήθηκαν, συντέλεσαν το καθένα με το τρόπο του, στην εξαγωγή του γενικότερου συμπεράσματος ότι τα διμεταλλικά ηλεκτρόδια Ni(Au1%at)-YSZ και Ni(Ag1%at)-YSZ είναι πολύ πιο σταθερά και ανθεκτικά στην εναπόθεση άνθρακα από το ‘συμβατικό’ ηλεκτρόδιο Ni-YSZ υπό τις συνθήκες της εσωτερικής αναμόρφωσης μεθανίου με ατμό που μελετήθηκαν. Τα ανοδικά αυτά ηλεκτρόδια επομένως φαίνεται να αποτελούν ενδιαφέρουσες επιλογές για χρήση στις κυψελίδες καυσίμου στερεού ηλεκτρολύτη που λειτουργούν με μεθάνιο ακόμη και σε αρκετά υψηλές θερμοκρασίες (μέχρι και 1173K) για τα NiAu-YSZ, ή σε χαμηλότερες (έως 973-1023K) για τα NiAg-YSZ. / The technology of solid oxide fuel cells seems quite attractive for the cogeneration of synthesis gas and electrical energy. A major bottleneck that has delayed the widespread use of this technology has always been the anode’s contamination with carbon due to the dissociative adsorption of methane. In a theoretical study, Besenbacher et al concluded that small quantities of Au on a supported Ni catalyst can minimize carbon deposition. Triantafyllopoulos and Neophytides reached similar results while studying the carbon adspecies that are formed on a Ni(1%at Au)-YSZ electrocatalyst during the dissociative adsorption of methane. The present study focused on the electrochemical activity of Ni(Au1%at)-YSZ and Ni(Ag1%at)-YSZ bimetallic electrodes under internal steam reforming conditions of methane in solid oxide fuel cells. The bimetallic electrodes were prepared by the combustion synthesis method, which is a relatively low temperature procedure that produces nanostructured electrodes, and their electrochemical behavior was investigated under internal steam reforming conditions. The thermogravimetric analysis, the electrochemical experiments as well as the kinetic measurements that were conducted, each one of them helped in reaching the general conclusion that the Ni(Au1%at)-YSZ and Ni(Ag1%at)-YSZ bimetallic electrodes are much more stable and carbon tolerant than the conventional Ni-YSZ electrode, at least under the steam reforming conditions of methane that they were studied. So these anodic electrodes seem to be interesting candidates for use in solid oxide fuel cells that operate with methane feed even at high temperatures (such as 1173K) for the NiAu-YSZ anodes, or at lower temperatures (up to 973-1023K) for the NiAg-YSZ anodes.
123

Uso do biogás para produção de biohidrogênio: eletrólise versus reforma a vapor / Use of biogas for hydrogen production: electrolysis versus steam reform

Paulino, Regina Franciélle Silva [UNESP] 08 March 2017 (has links)
Submitted by Regina Francielle Silva Paulino null (repaulino28@yahoo.com.br) on 2017-05-15T16:55:58Z No. of bitstreams: 1 Disssertação para repositório.pdf: 2094038 bytes, checksum: 627da6791c7083908510f6129d80d56f (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-05-16T14:35:09Z (GMT) No. of bitstreams: 1 paulino_rfs_me_guara.pdf: 2094038 bytes, checksum: 627da6791c7083908510f6129d80d56f (MD5) / Made available in DSpace on 2017-05-16T14:35:09Z (GMT). No. of bitstreams: 1 paulino_rfs_me_guara.pdf: 2094038 bytes, checksum: 627da6791c7083908510f6129d80d56f (MD5) Previous issue date: 2017-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho são estudados dois processos que utilizam biogás para obtenção do biohidrogênio. Inicialmente é analisado o processo de eletrólise da água, com o uso de energia elétrica gerada em conjunto motor de combustão interna/gerador (MCI) operando com biogás de aterro sanitário. Visando aproveitamento de calor dos gases de escape do MCI estuda-se o potencial de geração de energia térmica útil pela aplicação da técnica de cogeração. Considera-se dois casos: o primeiro para a produção de água quente em um trocador de calor, e o segundo, para a produção de água gelada em um sistema de refrigeração por absorção. Posteriormente é estudada a reforma a vapor de biogás para a produção de biohidrogênio, que utiliza também esse biocombustível para a geração de vapor superaquecido necessário ao processo de reforma. O objetivo é efetuar a análise energética de modo a determinar as eficiências dos processos, o potencial de produção de biohidrogênio, água quente ou água gelada, nos aterros sanitários da cidade de São Paulo. Também é efetuada análise de engenharia econômica para a determinação do custos da produção de biohidrogênio, água quente e água gelada, em US$/kWh. Esse estudo baseia-se em parâmetros tais como, investimento capital, custos de manutenção e operação dos equipamentos, período equivalente de utilização e período de amortização de capital. Em fase final, foram realizados estudos de impactos ambientais para a determinação das eficiências ecológicas dos processos de produção de biohidrogênio (reforma a vapor e eletrólise), considerando as emissões de poluentes, o dióxido de carbono equivalente e os indicadores de poluição. Como conclusões, tem-se que considerando a disponibilidade de biogás da cidade de São Paulo, existe potencial para a produção de biohidrogênio, e que o processo de reforma a vapor do biogás apresenta maior nível de eficiência sob o ponto de vista termodinâmico. Quando se considera a eletrólise incorporando a técnica da cogeração com a produção simultânea de eletricidade e água quente ou água gelada, observa-se aumento da eficiência energética do processo. A reforma a vapor do biogás, também se mostra mais atrativa economicamente de acordo com os parâmetros considerados. Sobre o ponto de vista ambiental, o processo de eletrólise com produção de água gelada apresenta maior eficiência ecológica, seguidos do processo de produção de água quente, reforma a vapor e somente eletrólise. / In this work is studied two processes to obtain hydrogen using biogas. Initially is analyzed the process of electrolysis of water, with the use of electricity generated in conjunction with an internal combustion engine / generator (ICE) operating with landfill biogas. generated by an internal combustion engine/generator operating with landfill biogas, is analyzed. In order to take advantage of the exhaust gases from the combustion of biogas, the potential of cogeneration is studied, another two cases are considered. The first one studies the production of hot water in the heat exchanger and the second analyzes the use of absorption refrigeration system to produce cold water. Subsequently it is studied the steam reform of biogas for the production of hydrogen, which is constituted of biogas burning for the generation of superheated steam used in the conversion of the fuel input. The objective is to make the energy analysis in order to determine the efficiency of the processes and the potential of producing hydrogen, hot water or ice water in the landfills of the city of São Paulo using the biogas generated. An economic engineering analysis to determine the production hydrogen cost, hot water and ice water, in US$/kWh, based on capital investment, maintenance and operation costs, equivalent period of use and payback. In the final phase, environmental study method is applied to determine the ecological efficiencies of the hydrogen production processes using biogas, considering the emissions of pollutants, carbon dioxide equivalent and pollution indicator. As a conclusion, considering the hydrogen production capacity and the biogas availability of the city of São Paulo, the process of steam reforming of the biogas is more thermodynamically efficient. When considering the electrolysis incorporating the cogeneration technique with the simultaneous production of electricity and hot water or cold water, it is observed an increase in the energy efficiency of the process. The steam reform of the biogas is more attractive economically according to the considered parameters. From the environmental point of view, the process of electrolysis with the production of cold water presents greater ecological efficiency, followed by the process of hot water production, steam reforming and only electrolysis.
124

Síntese e caracterização de nanopartículas de Ce(1-x)CuxO2 e Ce(1-y)CoyO2: obtenção de hidrogênio através da reforma a vapor de etanol e oxidação preferencial de monóxido de carbono / Synthesis and characterization of Ce(1-x)CuxO2 and Ce(1-y)CoyO2 nanoparticles: production of hydrogen via steam reforming of ethanol and preferential oxidation of carbon monoxide

Vinícius Dantas de Araujo 17 July 2013 (has links)
Os materiais nanoestruturados vêm sendo extensivamente estudados, não somente pelas novas propriedades e suas possíveis aplicações tecnológicas, mas também pela busca de uma melhor compreensão dos aspectos físicos e químicos causados por suas reduzidas dimensões. A céria (CeO2) tem despertado grande interesse nas últimas décadas, pois tem papel vital em tecnologias emergentes para aplicações em setores que vão desde a área ambiental através do desenvolvimento de novos catalisadores, passando pela área energética com o desenvolvimento de células de combustível em estado sólido e em novas tecnologias como a spintrônica por meio do desenvolvimento de novos materiais, os óxidos magnéticos diluídos. As propriedades físico-químicas da céria são diretamente dependentes do método de síntese e da morfologia das partículas. Nesse contexto, esse trabalho teve como objetivo realizar a síntese através dos métodos dos precursores poliméricos e hidrotérmico assistido por micro-ondas e a caracterização físico-química de nanopartículas do sistema Ce(1-x)MxO2 (M = Cu, Co). Ensaios catalíticos destes pós foram realizados para verificar sua eficácia como catalisadores na reação de oxidação preferencial de monóxido de carbono, e na produção de hidrogênio através da reforma a vapor de etanol. As amostras foram caracterizadas por difração de raios X, espectroscopia UV-Visível, EPR, Raman e fotoluminescência, BET, microscopia eletrônica de varredura e transmissão e TPR. As amostras sintetizadas pelo método dos precursores poliméricos são constituídas por nanopartículas com tamanho da ordem de 30 nm, enquanto que as amostras sintetizadas pelo método hidrotérmico assistido por micro-ondas são constituídas por nanobastões com tamanho da ordem de 10 nm de diâmetro por 70 nm de comprimento. Dentre as amostras sintetizadas pelo método dos precursores poliméricos, o catalisador Ce0,97Cu0,03O2 foi o que apresentou o melhor resultado na conversão do CO (100%)(CO-PROX), e o catalisador Ce0,80Co0,20O2 apresentou 100% de conversão de etanol. Para as amostras sintetizadas pelo método hidrotérmico assistido por micro-ondas o catalisador Ce0,97Cu0,03O2 foi o que apresentou o melhor resultado na conversão do CO (85%)(CO-PROX), e todos os catalisadores com cobalto apresentaram 100% de conversão de etanol. As caracterizações físico-químicas revelaram que diferentes espécies de cobre/cobalto presentes nos catalisadores, o teor de cobre/cobalto presente e as interações entre o cobre/cobalto e o suporte de CeO2 são os fatores que mais contribuem na eficiência dos catalisadores. / Nanostructured materials have been extensively studied, not only by new properties and their possible technological applications, but also by the search for a better understanding of the physical and chemical aspects caused by its small size. Ceria (CeO2) have attracted great interest in recent decades, because it plays a vital role in emerging technologies for applications in sectors ranging from environmental area through the development of new catalysts, passing by the energy area with the development of solid state fuel cells and in new technologies such as spintronics through the development of new materials, the diluted magnetic oxides. The physico-chemical properties of ceria are directly dependent on the synthesis method and the morphology of the particles. In this context, this study aimed the synthesis via polymeric precursors and microwave-assisted hydrothermal methods and the physico-chemical characterization of nanoparticles from the Ce(1-x)MxO2 (M = Cu, Co) system. Catalytic tests of the powders were carried out to verify its efficiency as catalysts on carbon monoxide preferential oxidation reaction, and hydrogen production by steam reforming of ethanol. The samples were characterized by X-ray diffraction, UV-visible, EPR, Raman and photoluminescence spectroscopies, BET, scanning and transmission electron microscopy and TPR. Samples synthesized by polymeric precursors method consist of nanoparticles with sizes of about 30 nm, while the samples synthesized by microwave-assisted hydrothermal method consist of nanorods with 10 nm average diameter and 70 nm length. Among the samples synthesized by the polymeric precursors method, Ce0,97Cu0,03O2 was the one that presented the best result in the CO conversion (100%)(CO-PROX), and the Ce0,80Co0,20O2 catalyst presented 100% of ethanol conversion. For samples synthesized by microwave-assisted hydrothermal method the Ce0,97Cu0,03O2 catalyst was the one that presented the best result in the CO conversion (85%) (CO-PROX), and all catalysts with cobalt presented 100% of ethanol conversion. The physical-chemical characterizations revealed that different species of copper/cobalt present in the catalysts, the copper/cobalt content and interactions between copper/cobalt and the CeO2 support are the main factors that contribute on the efficiency of the catalysts.
125

Hydrogen production by steam reforming of bio-alcohols:the use of conventional and membrane-assisted catalytic reactors

Seelam, P. K. (Prem Kumar) 24 November 2013 (has links)
Abstract The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO2-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H2) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H2 is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H2 production for many years. At present, ~50% of H2 is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce ~99.99% H2, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H2 production. In a membrane based reactor, the reaction and selective separation of H2 occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H2 more efficiently and in an environmentally friendly way from bio-alcohols with a high H2 selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 °C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H2. CNTs were found to be promising support materials for the low temperature reforming compared to conventional catalyst supports, e.g. Al2O3. The metal/metal oxide decorated CNTs presented active particles with narrow size distribution and small size (~2–5 nm). The ZnO promoted Ni/CNT based catalysts showed the highest H2 selectivity of ~76% with very low CO selectivity <1%. Ethanol was shown to be a more suitable and viable source for H2 than glycerol. The dense Pd-Ag membrane had higher selectivity but a lower permeating flux than the composite membrane. The MR performance is also dependent on the active catalyst materials and thus, both the catalyst and membrane play an important role. Overall, the membrane–assisted reformer outperforms the conventional reformer and it is a potential technology in pure H2 production. The high purity of H2 gas with a CO-free reformate for fuel cell applications can be gained using the MR system. / Tiivistelmä Maailman energiankulutus on kasvussa räjähdysmäisen väestönkasvun ja voimakkaan kaupungistumisen myötä. Tällä hetkellä energian tuottamisen aiheuttamat ympäristöongelmat ja taloudellinen epävarmuus ovat seikkoja, joiden ratkaisemiseksi tarvitaan vaihtoehtoisia ja ei-perinteisiä energialähteitä, joilla on korkea energiasisältö ja jotka tuottavat vähän hiilidioksidipäästöjä. Eräs vaihtoehtoisista lähestymistavoista on vetytalous yhdistettynä polttokennotekniikkaan, minkä on esitetty helpottavan siirtymistä kestävään yhteiskuntaan. Vety on puhdas ja hiilivapaa polttoaine ja energian kantaja. Lisäksi vetyä käytetään monissa prosesseissa kemian-, elintarvike-, metalli- ja lääketeollisuudessa ja se on arvokas kemikaali monissa prosesseissa (mm. öljynjalostamoissa). Uusiutumattomat luonnonvarat ovat olleet tähän saakka merkittävin vedyn tuotannon raaka-aine. Tällä hetkellä noin 50 % vedystä tuotetaan maakaasun katalyyttisellä höyryreformoinilla. Puhtaan (yli 99,99 %) vedyn tuotanto vaatii kuitenkin useita puhdistusvaiheita, jotka ovat erittäin energiaintensiivisiä. Integroimalla reaktio- ja puhdistusvaihe samaan yksikköön (membraanireaktori) saavutetaan huomattavia kustannussäästöjä. Biopolttoaineet, kuten biomassapohjaiset alkoholit (bioetanoli ja bioglyseroli), ovat vaihtoehtoisia lähtöaineita vedyn valmistuksessa. Tämän työn tavoitteena on tuottaa vetyä bioalkoholeista tehokkaasti (korkea selektiivisyys ja saanto) ja ympäristöystävällisesti. Tutkimus on jaettu kahteen osaan, joista ensimmäisessä tutkittiin etanolin katalyyttistä höyryreformointia matalissa lämpötiloissa (<450 °C) hyödyntämällä metallipinnoitettuja hiilinanoputkia. Työn toisessa osassa höyryreformointia ja vesikaasun siirtoreaktioa tutkittiin membraanireaktorissa käyttämällä vedyn tuotantoon tiheitä palladiumpohjaisia kalvoja sekä huokoisia palladiumkomposiittikalvoja. Hiilinanoputket (CNT) havaittiin lupaaviksi katalyyttien tukimateriaaleiksi verrattuna tavanomaisesti valmistettuihin tukiaineisiin, kuten Al2O3. CNT-tukiaineelle pinnoitetuilla aktiivisilla aineilla (metalli-/metallioksidit) todettiin olevan pieni partikkelikoko (~2–5 nm) ja kapea partikkelikokojakauma. Sinkkioksidin (ZnO) lisäyksellä Ni/CNT-katalyytteihin saavutettiin korkea vetyselektiivisyys (~76 %) ja erittäin alhainen hiilimoksidiselektiivisyys (<1 %). Etanolin todettiin olevan parempi vedyn raaka-aine kuin glyserolin. Tiheillä Pd-Ag-kalvoilla havaittiin olevan vedyn suhteen korkeampi selektiivisyys mutta matalampi vuo verrattuna palladiumkomposiittikalvoihin. Membraanireaktorin suorituskyky oli riippuvainen myös katalyytin aktiivisuudesta, joten sekä kalvolla että katalyyttimateriaalilla oli merkittävä rooli kyseisessä reaktorirakenteessa. Yhteenvetona voidaan todeta, että membraanierotukseen perustuva reformointiyksikkö on huomattavasti perinteistä reformeriyksikköä suorituskykyisempi mahdollistaen tehokkaan teknologian puhtaan vedyn tuottamiseksi. Membraanitekniikalla tuotettua puhdasta vetyä voidaan hyödyntää mm. polttokennojen polttoaineena.
126

Untersuchungen zur Prozessgasaufbereitung von Flüssiggas für die Dampfreformierung in Brennstoffzellen-BHKW

Anger, Stephan 11 December 2015 (has links)
Für PEM-Brennstoffzellen-Mikro-BHKW mit integrierter Dampfreformierung ist die Verwendung von LPG (Liquefied Petroleum Gas) bei fehlender Erdgasinfrastruktur interessant. Grundlage der BHKW-Effizienz ist eine optimale wärmetechnische Verschaltung, durch die u.a. das LPG/H2O-Gemisch effektiv auf die Reaktionstemperatur (700 °C) der Dampfreformierung vorgewärmt wird. In Abhängigkeit von der Verweilzeit, der das Gemisch ausgesetzt wird, können signifikante Mengen ungesättigter Kohlenwasserstoffe (C3H6, C2H4, C2H2) pyrolytisch gebildet werden, C3H6 kann des Weiteren bereits im LPG enthalten sein. Bei der katalytisch unterstützten Dampfreformierung fördert dies die Bildung verschiedenartiger kohlenstoffhaltiger Ablagerungen, wodurch eine vorzeitige Deaktivierung eintritt. In der Arbeit wird das Spaltpotenzial numerisch und experimentell untersucht. Durch Anwendung von Temperatur-Programmierter-Methanisierung und Ramanspektroskopie wird ferner der negative Einfluss bereits geringer C3H6-Anteile an einem Katalysator gezeigt. Aus den Ergebnissen werden abschließend Maßnahmen zur Minimierung kohlenstoffhaltiger Ablagerungen abgeleitet. / The use of LPG (Liquefied Petroleum Gas) is an alternative for PEM fuel cell micro-CHP systems with integrated steam reforming in the absence of natural gas infrastructure. An optimized thermo technical interconnection is the basis of the CHP efficiency, whereby, among other things, the LPG/H2O-mixture is preheated to the steam reforming reaction temperature (700 °C). Significant amounts of unsaturated hydrocarbons (C3H6, C2H4, C2H2) can be formed pyrolytically depending on the residence time for preheating the mixture; furthermore, C3H6 can be already a component of LPG. These species promote the formation of different carbon containing deposits on the reforming catalyst whereby a premature deactivation occurs. The thesis deals with the investigation of the pyrolysis potential using numerical as well as experimental methods. Furthermore, the negative effect of already low amounts of unsaturated hydrocarbons on a catalyst is shown by using Temperature-Programmed-Methanation and Raman spectroscopy. Finally, actions for avoiding the production of carbon containing deposits are derived from the results.
127

Production in situ d'hydrogène pur par reformage d'éthanol dans un réacteur catalytique à membrane / On-site pure hydrogen production in a catalytic membrane reactor by ethanol steam reforming

Hedayati, Ali 26 September 2016 (has links)
Dans ce travail, la production in-situ d'hydrogène (pur) à partir de vapo-reformage d’éthanol (ESR) dans un réacteur catalytique à membrane (MR) a été étudiée. Un mélange d'éthanol pur et distillé a été utilisé comme combustible. Le réacteur est constitué d’un catalyseur Pd-Rh/CeO2 et d’une membrane Pd-Ag: l’ensemble est désigné par « reformeur ». Les expériences sur ce reformeur ont été effectuées dans diverses conditions de fonctionnement: température, pression, débit de combustible et rapport molaire de l'eau-éthanol (rapportSC). La performance du réacteur catalytique à membrane (CMR) a été étudiée en termes de facteur de production d'hydrogène théorique, d’efficacité de production de l’hydrogène et de la part d’hydrogène récupérée. L’évaluation thermodynamique du reformeur a été présentée. L'analyse exergétique a été réalisée sur la base des résultats expérimentaux visant non seulement à comprendre la performance thermodynamique du reformeur, mais aussi d'introduire l'application de l'analyse exergétique dans les études CMRs. L'analyse exergétique a fourni des informations importantes sur l'effet des conditions d'exploitation et les pertes thermodynamiques, et a donné lieu à la compréhension des meilleures conditions de fonctionnement. Outre les évaluations expérimentales et thermodynamiques du reformeur, la simulation de la dynamique de la production d'hydrogène (perméation) a été effectuée comme la dernière étape pour étudier l'applicabilité d'un tel système dans le cadre d'une utilisation finale réelle, qui peut être l’alimentation d’une pile à combustible. La simulation présentée dans ce travail est semblable aux ajustements de débit d'hydrogène nécessaires pour régler la charge électrique d'une pile à combustible répondant à des besoins variables. / In this work, in-situ production of fuel cell grade hydrogen (pure hydrogen) via catalytic ethanol steam reforming (ESR) in a membrane reactor (MR) was investigated. A mixture of pure ethanol and distilled was used as the fuel. ESR experiments were carried out over a Pd-Rh/CeO2 catalyst in a Pd-Ag membrane reactor – named as the fuel reformer – at variety of operating conditions regarding the operating temperature, pressure, fuel flow rate, and the molar ratio of water-ethanol (S/C ratio). The performance of the catalytic membrane reactor (CMR) was studied in terms of pure hydrogen production, hydrogen yield, andhydrogen recovery.Thermodynamic evaluation of the CMR was presented as a supplement to the comprehensive investigation of the overall performance of the mentioned pure hydrogen generating system. Exergy analysis was performed based on the experimental results aiming not only to understand the thermodynamic performance of the fuel reformer, but also to introduce the application of the exergy analysis in CMRs studies. Exergy analysis provided important information on the effect of operating conditions and thermodynamic losses, resulting in understanding of the best operating conditions.In addition to the experimental and thermodynamic evaluation of the reforming system, the simulation of the dynamics of hydrogen production (permeation) was performed as the last step to study the applicability of such a system in connection with a real end user, which can be a fuel cell. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, if fed on line by the studied pure hydrogen generating system.
128

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.
129

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.

Page generated in 0.061 seconds