• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 15
  • 13
  • 11
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 38
  • 35
  • 32
  • 23
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Stereoscopic PIV In Steady Flow Through a Bileaflet Mechanical Heart Valve

Hutchison, Christopher 14 July 2009 (has links)
The tendency of aortic bileaflet mechanical heart valves (BiMHVs) to promote thrombosis has been well documented in the literature. The relationship of thrombosis to valve fluid dynamics has prompted numerous studies of aortic BiMHV flow. In this study, steady flow was investigated downstream of a model Carbomedics No. 25 BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry (SPIV). The Reynolds number based on inlet diameter was 7600, and the measurement plane was perpendicular to the leaflet axes at the centerline of the aortic sinus. The typical formation of three jets was observed: the upper and lower lateral orifice jets, and the central jet. Flow separation from the valve ring was seen, and large scale vortices were identified in both the upper and lower sinus regions. An asymmetry in the reverse flow was found, and possible causes were discussed. All three jets were seen to decay similarly to free rectangular jets, with zero decay initially, followed by a 'linear' decay rate in which Umax^2~X. The central jet was also seen to be self similar in the linear decay region. Analysis of the out-of-plane velocity yielded two alternate explanations of streamwise vortex (i.e. Wx) structure, with either a four-cell or an eight-cell streamwise vortex structure being present in the mean velocity field. Organization of large scale three dimensional flow structures was thus apparent. Calculation of in-plane Reynolds stresses showed that values were highest in the outer shear layers of the lateral orifice jets. Elevated Reynolds shear stress values were also found in the leaflet wake regions, and the shear layers of the central jet.
62

Stereoscopic PIV In Steady Flow Through a Bileaflet Mechanical Heart Valve

Hutchison, Christopher 14 July 2009 (has links)
The tendency of aortic bileaflet mechanical heart valves (BiMHVs) to promote thrombosis has been well documented in the literature. The relationship of thrombosis to valve fluid dynamics has prompted numerous studies of aortic BiMHV flow. In this study, steady flow was investigated downstream of a model Carbomedics No. 25 BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry (SPIV). The Reynolds number based on inlet diameter was 7600, and the measurement plane was perpendicular to the leaflet axes at the centerline of the aortic sinus. The typical formation of three jets was observed: the upper and lower lateral orifice jets, and the central jet. Flow separation from the valve ring was seen, and large scale vortices were identified in both the upper and lower sinus regions. An asymmetry in the reverse flow was found, and possible causes were discussed. All three jets were seen to decay similarly to free rectangular jets, with zero decay initially, followed by a 'linear' decay rate in which Umax^2~X. The central jet was also seen to be self similar in the linear decay region. Analysis of the out-of-plane velocity yielded two alternate explanations of streamwise vortex (i.e. Wx) structure, with either a four-cell or an eight-cell streamwise vortex structure being present in the mean velocity field. Organization of large scale three dimensional flow structures was thus apparent. Calculation of in-plane Reynolds stresses showed that values were highest in the outer shear layers of the lateral orifice jets. Elevated Reynolds shear stress values were also found in the leaflet wake regions, and the shear layers of the central jet.
63

Active flow control of a precessing jet

Babazadeh, Hamed Unknown Date
No description available.
64

Perceived Image Quality Assessment for Stereoscopic Vision

Akhter, Roushain 07 April 2011 (has links)
This thesis describes an automatic evaluation approach for estimating the quality of stereo displays and vision systems using image features. The method is inspired by the human visual system. Display of stereo images is widely used to enhance the viewing experience of three-dimensional (3D) visual displays and communication systems. Applications are numerous and range from entertainment to more specialized applications such as: 3D visualization and broadcasting, robot tele-operation, object recognition, body exploration, 3D teleconferencing, and therapeutic purposes. Consequently, perceived image quality is important for assessing the performance of 3D imaging applications. There is no doubt that subjective testing (i.e., asking human viewers to rank the quality of stereo images) is the most accurate method for quality evaluation. It reflects true human perception. However, these assessments are time consuming and expensive. Furthermore, they cannot be done in real time. Therefore, the goal of this research is to develop an objective quality evaluation methods computational models that can automatically predict perceived image quality) correlating well with subjective predictions that are required in the field of quality assessment. I believe that the perceived distortion and disparity of any stereoscopic display are strongly dependent on local features, such as edge (non-uniform) and non-edge (uniform) areas. Therefore, in this research, I propose a No-Reference (NR) objective quality assessment for coded stereoscopic images based on segmented local features of artifacts and disparity. Local feature information such as edge and non-edge area based relative disparity estimation, as well as the blockiness, blur, and the zero-crossing within the block of images, are evaluated in this method. A block-based edge dissimilarity approach is used for disparity estimation. I use the Toyama stereo images database to evaluate the performance and to compare it with other approaches both qualitatively and quantitatively.
65

Perceived Image Quality Assessment for Stereoscopic Vision

Akhter, Roushain 07 April 2011 (has links)
This thesis describes an automatic evaluation approach for estimating the quality of stereo displays and vision systems using image features. The method is inspired by the human visual system. Display of stereo images is widely used to enhance the viewing experience of three-dimensional (3D) visual displays and communication systems. Applications are numerous and range from entertainment to more specialized applications such as: 3D visualization and broadcasting, robot tele-operation, object recognition, body exploration, 3D teleconferencing, and therapeutic purposes. Consequently, perceived image quality is important for assessing the performance of 3D imaging applications. There is no doubt that subjective testing (i.e., asking human viewers to rank the quality of stereo images) is the most accurate method for quality evaluation. It reflects true human perception. However, these assessments are time consuming and expensive. Furthermore, they cannot be done in real time. Therefore, the goal of this research is to develop an objective quality evaluation methods computational models that can automatically predict perceived image quality) correlating well with subjective predictions that are required in the field of quality assessment. I believe that the perceived distortion and disparity of any stereoscopic display are strongly dependent on local features, such as edge (non-uniform) and non-edge (uniform) areas. Therefore, in this research, I propose a No-Reference (NR) objective quality assessment for coded stereoscopic images based on segmented local features of artifacts and disparity. Local feature information such as edge and non-edge area based relative disparity estimation, as well as the blockiness, blur, and the zero-crossing within the block of images, are evaluated in this method. A block-based edge dissimilarity approach is used for disparity estimation. I use the Toyama stereo images database to evaluate the performance and to compare it with other approaches both qualitatively and quantitatively.
66

Advanced visualizations for network security

Nunnally, Troy J. 12 January 2015 (has links)
Monitoring volumes of malicious network data for across multiple sources can potentially be overwhelming. As a result, vital data is at a greater risk of being overlooked and the time span for analyzing it could be too lengthy. One way to address this issue is to employ network security visualization techniques to evaluate security risks and identify malicious activity to help mitigate compromised nodes on a network. The purpose of this thesis is to introduce a visualization framework to help reduce task-completion time, enhance situational awareness, and decrease user error of complex visualizations for network security applications. From the developed framework, three techniques are suggested as contributions using visualization and interaction: (1) Stereoscopic visualization technique aims to increase user awareness of vulnerabilities and malicious attacks, (2) the recommender system aims to ensure efficient navigation in complex 3D environments, and (3) an interaction system aims to assist in usability of visualization environments using Natural User Interfaces (NUIs). To investigate the aforementioned techniques, the following tools were created: 3D Stereoscopic Vulnerability Assessment Tool (3DSVAT), Parallel 3D Coordinate Visualization (P3D), NAVSEC recommender system, and Interaction System for Network Security (InterSec).
67

Active flow control of a precessing jet

Babazadeh, Hamed 06 1900 (has links)
Active flow control of a precessing jet is the focus of this work. A round jet confined by a round cavity exhibits a self-excited rotational motion, precession, for a specific range of cavity lengths. Active flow control of this unstable flow provides the ability to control near-field mixing of the precessing jet. Twelve micro-jets on the periphery of the nozzle inlet are used as actuation and near-field pressure data is measured by four pressure probes at the chamber exit to monitor the flow behavior. A phase plane, based on pressure signals, is used to find a Reynolds number and actuation frequency range where actuation stabilizes the flow motion. Phase-locked stereoscopic PIV is also used to validate the pressure processing tool. The results confirm the pressure measurement and micro-jet actuation can be employed to develop a future closed-loop flow control on a precessing jet.
68

Using neural networks for three-dimensional measurement in stereo vision systems /

Tien, Fang-Chih, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 187-202). Also available on the Internet.
69

Using neural networks for three-dimensional measurement in stereo vision systems

Tien, Fang-Chih, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 187-202). Also available on the Internet.
70

Crosstalk in Stereoscopic LCD 3-D Systems

Feng, Hsin-Chang January 2015 (has links)
Stereoscopic 3-D has received considerable attention over the last few decades. Since a stereoscopic 3-D pair includes two 2-D images together, the amount of data for an uncompressed stereo image is double compared to that for an uncompressed 2-D image. Thus efficient compression techniques are of paramount importance. However, crosstalk effect is an inherent perceivable problem in current 3-D display technologies. It can lead not only to degradation in the perceived quality of 3-D images, but also to discomfort in some individuals. Correspondingly, when crosstalk occurs, the compression artifacts in a compressed stereo pair can be perceived, despite the fact that such artifacts are imperceptible in individual left and right images. This dissertation proposes a methodology for visually lossless compression of monochrome stereoscopic 3-D images in which crosstalk effect is carefully considered. In the proposed methodology for visually lossless compression of monochrome stereoscopic 3-D images, visibility thresholds are measured for quantization distortion in JPEG2000 to conceal perceivable compression artifacts. These thresholds are found to be functions of not only spatial frequency, but also of wavelet coefficient variance, as well as the gray level in both the left and right images. In order to avoid a daunting number of measurements of visibility thresholds during subjective experiments, a model for visibility thresholds is developed. The left image and right image of a stereo pair are then compressed jointly using the visibility thresholds obtained from the proposed model to ensure that quantization errors in each image are imperceptible to both eyes. This methodology is then demonstrated via a 3-D stereoscopic liquid crystal display (LCD) system with an associated viewing condition. The resulting images are visually lossless when displayed individually as 2-D images, and also when displayed in stereoscopic 3-D mode. In order to have better perceptual quality of stereoscopic 3-D images, hardware based techniques have been used to reduce crosstalk in 3-D stereoscopic display systems. However, crosstalk is still readily apparent in some 3-D viewing systems. To reduce crosstalk remains after hardware crosstalk compensation, a methodology for crosstalk compensation accomplished via image processing is provided in this dissertation. This methodology focuses on crosstalk compensation of 3-D stereoscopic LCD systems in which active shutter glasses are employed. Subjective experiments indicate that crosstalk is a function of not only the pixel intensity in both the left and right channels, but also of spatial location. Accordingly, look-up tables (LUTs) are developed for spatially-adaptive crosstalk compensation. For a given combination of gray levels in the left and right channels at a specific spatial location, the original pixel values are replaced by values contained in the LUTs. The crosstalk in the resulting stereo pair is significantly reduced, resulting in a significant increase in perceptual image quality.

Page generated in 0.0637 seconds