Spelling suggestions: "subject:"millionimages"" "subject:"bioimages""
1 |
La part de l'autre : une transfiguration du banal / The other's share : a transfiguration of banalityWu, Léa-Anne 11 December 2018 (has links)
Cette thèse s’appuie sur une pratique de la vidéographie, du montage et de la photographie et explore le thème de l’intime. Son hypothèse est que l’espace interrogé de la quotidienneté est identique avec celui de l’exploration des intimes. La réflexion se base sur une analyse des textes théoriques ou des réalisations artistiques de Gaston Bachelard, Roland Barthes, Henri Bergson Sophie Calle, Eliane Chiron, Gilles Deleuze, Georges Didi-Huberman, le Groupe Mu, Pierre Huyghe, Maurice Merleau-Ponty ou encore Agnès Varda, et s’appuie sur un matériel plastique qui permet de cristalliser et situer les déplacements et les objets appartenant aux rituels du quotidien. La première partie explore la sphère intime par l’intermédiaire de photos de famille et d’un medium pictural, le cercle bleu. La seconde partie analyse la sphère intime au travers d’images extraites de films vidéographiques réalisés en suivant des personnes ou dans des espaces privés. La troisième partie est dédiée aux espaces parcourus par les personnages que je filme lorsque je les suis, que je parcours lorsque je marche et par les spectateurs au sein de mon installation. Cette thèse interroge le rôle du corps in situ, au contact des lieux et des situations, dans l’élaboration d’un code narratif et poétique afin d’identifier et d’établir les relations de réciprocité et d’interactions qui lient mon matériel plastique à la durée, au temps et à l’espace, au quotidien qui passe et qui s’étale. Par un jeu de miroirs, ce travail cherche à faire résonner notre mémoire et celle des spectateurs et en hyper-multipliant la banalité du quotidien qui devient extraordinaire. / This thesis is based on a practice of videography, editing and photography and explores the theme of intimacy. Its hypothesis is that the interrogated space of everyday life is identical with that of the exploration of intimates. The reflection is based on an analysis of the theoretical texts or artistic achievements by Gaston Bachelard, Roland Barthes, Henri Bergson Sophie Calle, Eliane Chiron, Gilles Deleuze, George Didi-Huberman, Mu Group, Pierre Huyghe, Maurice Merleau-Ponty or Agnès Varda, and relies on a plastic material that can crystallize and locate the movements and objects belonging to the rituals of everyday life. The first part explores the intimate sphere through family photos and a pictorial medium, the blue circle. The second part analyses the intimate sphere through images extracted from video films made following people or in private spaces. The third part is dedicated to the spaces travelled by the characters that I shadowed, that I walk when I walk and by the spectators within my installation. This thesis questions the in situ role of the body, in con-tact with places and situations, in the development of a narrative and poetic code in order to identify and establish the relations of reciprocity and interactions that bind my plastic material to the duration, the time and the space, the daily life that goes on and spreads. Through a game of mirrors, this work seeks to resonate our memory and that of the audience and hyper-multiplying the banality of everyday life that becomes extraordinary.
|
2 |
Detection of black-backed jackal in still imagesPathare, Sneha P. 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: In South Africa, black-back jackal (BBJ) predation of sheep causes heavy losses to sheep
farmers. Different control measures such as shooting, gin-traps and poisoning have been used
to control the jackal population; however, these techniques also kill many harmless animals,
as they fail to differentiate between BBJ and harmless animals. In this project, a system is
implemented to detect black-backed jackal faces in images. The system was implemented using
the Viola-Jones object detection algorithm. This algorithm was originally developed to detect
human faces, but can also be used to detect a variety of other objects. The three important
key features of the Viola-Jones algorithm are the representation of an image as a so-called
”integral image”, the use of the Adaboost boosting algorithm for feature selection, and the use
of a cascade of classifiers to reduce false alarms.
In this project, Python code has been developed to extract the Haar-features from BBJ
images by acting as a classifier to distinguish between a BBJ and the background. Furthermore,
the feature selection is done using the Asymboost instead of the Adaboost algorithm so as to
achieve a high detection rate and low false positive rate. A cascade of strong classifiers is trained
using a cascade learning algorithm. The inclusion of a special fifth feature Haar feature, adapted
to the relative spacing of the jackal’s eyes, improves accuracy further. The final system detects
78% of the jackal faces, while only 0.006% of other image frames are wrongly identified as faces. / AFRIKAANSE OPSOMMING: Swartrugjakkalse veroorsaak swaar vee-verliese in Suid Afrika. Teenmaatreels soos jag,
slagysters en vergiftiging word algemeen gebruik, maar is nie selektief genoeg nie en dood dus
ook vele nie-teiken spesies. In hierdie projek is ’n stelsel ontwikkel om swartrugjakkals gesigte
te vind op statiese beelde. Die Viola-Jones deteksie algoritme, aanvanklik ontwikkel vir die
deteksie van mens-gesigte, is hiervoor gebruik. Drie sleutel-aspekte van hierdie algoritme is die
voorstelling van ’n beeld deur middel van ’n sogenaamde integraalbeeld, die gebruik van die
”Adaboost” algoritme om gepaste kenmerke te selekteer, en die gebruik van ’n kaskade van
klassifiseerders om vals-alarm tempos te verlaag.
In hierdie projek is Python kode ontwikkel om die nuttigste ”Haar”-kenmerke vir die deteksie
van dié jakkalse te onttrek. Eksperimente is gedoen om die nuttigheid van die ”Asymboost”
algoritme met die van die ”Adaboost” algoritme te kontrasteer. ’n Kaskade van klassifiseerders
is vir beide van hierdie tegnieke afgerig en vergelyk. Die resultate toon dat die kenmerke wat die
”Asymboost” algoritme oplewer, tot laer vals-alarm tempos lei. Die byvoeging van ’n spesiale
vyfde tipe Haar-kenmerk, wat aangepas is by die relatiewe spasieëring van die jakkals se oë,
verhoog die akkuraatheid verder. Die uiteindelike stelsel vind 78% van die gesigte terwyl slegs
0.006% ander beeld-raampies verkeerdelik as gesigte geklassifiseer word.
|
3 |
The Effects of Still Images and Animated Images on Motion-Related and Non-Motion Related Learning Tasks in College Students of Different Levels of Field DependenceGao, Huaiying 26 April 2005 (has links)
The use of still images in instruction has a long history in the field of education. With the widespread use of microcomputers and the development of graphic software, the ability to create and use animated images has greatly increased; today many people use animated images in their teaching and training activities. Since the use of different types of images in instruction has various influences on students'learning results, the different effects between animated images and still images have been studied widely among researchers. However, the research results are not consistent. Some research results show that animated images are more effective than still images and some show no difference or less effective results.
This experimental study explores the effects of animated images and still images on college students' learning of motion-related tasks and non-motion related tasks, with the students possessing different levels of field dependence-independence. This study found that:
For learning tasks involving motion and/or change, animated images were more effective than still images for college students, and field dependent students benefited more from animated images than did the field independent students. However, for learning tasks that did not involve motion or change, there was no difference in learning results from the use of still images as opposed to animated images. In addition, for such learning tasks, there was no difference in the learning benefits of still images to field dependent versus field independent learners. / Ph. D.
|
4 |
Action Recognition in Still Images and Inference of Object AffordancesGirish, Deeptha S. 15 October 2020 (has links)
No description available.
|
5 |
Making Cytological Diagnoses on Digital Images Using the iPath NetworkDalquen, Peter, Savic Prince, Spasenija, Spieler, Peter, Kunze, Dietmar, Neumann, Heinrich, Eppenberger-Castori, Serenella, Adams, Heiner, Glatz, Katharina, Bubendorf, Lukas 20 May 2020 (has links)
Background: The iPath telemedicine platform Basel is mainly used for histological and cytological consultations, but also serves as a valuable learning tool. Aim: To study the level of accuracy in making diagnoses based on still images achieved by experienced cytopathologists, to identify limiting factors, and to provide a cytological image series as a learning set. Method: Images from 167 consecutive cytological specimens of different origin were uploaded on the iPath platform and evaluated by four cytopathologists. Only wet-fixed and well-stained specimens were used. The consultants made specific diagnoses and categorized each as benign, suspicious or malignant. Results: For all consultants, specificity and sensitivity regarding categorized diagnoses were 83–92 and 85–93%, respectively; the overall accuracy was 88–90%. The interobserver agreement was substantial (κ = 0.791). The lowest rate of concordance was achieved in urine and bladder washings and in the identification of benign lesions. Conclusion: Using a digital image set for diagnostic purposes implies that even under optimal conditions the accuracy rate will not exceed to 80–90%, mainly because of lacking supportive immunocytochemical or molecular tests. This limitation does not disqualify digital images for teleconsulting or as a learning aid. The series of images used for the study are open to the public at http://pathorama.wordpress.com/extragenital-cytology-2013/.
|
Page generated in 0.0397 seconds