Spelling suggestions: "subject:"ftir"" "subject:"tir""
111 |
Développement d’outils innovants pour l'étude de l’infection chronique / Development of innovative tools for the study of chronic infectionBerrou, Kevin 30 January 2019 (has links)
Un des enjeux majeurs dans la gestion de la plaie de pied diabétique est l’obtention d’informations permettant d’anticiper l’évolution de ces infections. Actuellement, il n’existe pas d’outils suffisamment efficaces qui permettent de distinguer une plaie colonisée d’une plaie infectée. L’approche proposée est basée sur discrimination de plusieurs bactéries fréquemment retrouvées dans les plaies chroniques de pied diabétique à partir de leur profil métabolique, et plus particulièrement des métabolites volatils qu’elles produisent. En effet, le dynamisme du métabolisme bactérien serait à même de mettre en évidence les changements qui s’opèrent dans la plaie. Dans un premier temps, une nouvelle méthodologie de concentration des métabolites volatils par Stir Bar Sorptive Extraction (SBSE) a été développée. Elle est basée sur l’utilisation de barreaux qui sont placés à la fois dans le milieu de culture et en espace de tête, suivie d’une analyse par GC-MS. La méthode a ensuite été comparée avec une autre méthode de concentration utilisant des fibres (la SPME) et a montré une meilleure capacité de concentration, permettant ainsi une détection plus sensible. Cette méthodologie a ensuite été utilisée pour suivre la production métabolique de six souches bactériennes cultivées dans des conditions mimant la plaie chronique. Grâce à leur profil métabolique, il a été possible de distinguer des espèces bactériennes. De plus, de manière plus surprenante, il a été possible de distinguer deux souches de Staphylococcus aureus présentant des profils de virulence différents. Enfin, une étude en co-culture a mis en évidence que 83% des métabolites produit en culture simple étaient retrouvés, prouvant l’intérêt de la méthodologie pour distinguer des souches bactériennes d’une même espèce au sein d’une plaie. / One of the major challenges in the management of diabetic foot wounds is to obtain information to anticipate the evolution of these infections. Currently, there are no sufficiently effective tools to distinguish a colonized wound to an infected wound. The proposed approach is based on the discrimination of several bacteria frequently found in chronic diabetic foot wounds from their metabolic profile, and more specifically the volatile metabolites they produce. Indeed, the dynamism of bacterial metabolism would be able to highlight the changes that are occurring in the wound. First, a new methodology for the concentration of volatile metabolites by Stir Bar Sorptive Extraction (SBSE) was developed. It is based on the use of stir bars that are placed both in the culture medium and in headspace, followed by GC-MS analysis. The method was then compared with another concentration method using the fibres (SPME) and we highlighted a better concentration capacity with a more sensitive detection. This methodology was then used to monitor the metabolic production of six bacterial strains grown under conditions mimicking the chronic wound. Their metabolic profile allowed us to distinguish bacterial species. Moreover, more surprisingly, it was possible to distinguish two strains of Staphylococcus aureus with different virulence profiles. Finally, a co-culture was performed and we showed that 83% of the metabolites produced in simple culture were found, proving the interest of the methodology to distinguish bacterial strains of the same species within a wound.
|
112 |
ANALYSIS OF FRICTION STIR ADDITIVE MANUFACTURING AND FRICTION STIR WELDING OF AL6061-T6 VIA NUMERICAL MODELING AND EXPERIMENTSNitin Rohatgi (9757331) 14 December 2020
<div>Aluminum 6061 is extensively used in industry and welding and additive manufacturing (AM) of Al6061 offer flexibility in manufacturing. Solid-state welding and AM processes can overcome the shortcomings of fusion-based processes, such as porosity and hot cracking. In this thesis, friction stir welding and friction stir additive manufacturing, which are both based on the concepts of friction stir processing (solid-state), were studied. The welding parameters for a sound weld during friction stir welding of Al6061-T6 alloy were determined based on the experimental and numerical analysis. Formation of tunnel defects and cavity defects was also studied. A Coupled Eulerian-Lagrangian (CEL) finite element model was established to analyze the process, where the workpiece was modeled as an Eulerian body, and the tool as Lagrangian. The model was validated by conducting experiments and correlating the force measured by a three-axis dynamometer. The experimentally validated simulation model was used to find an optimum parameter set for the sound weld case.</div><div>To demonstrate the friction stir additive manufacturing process, a 40 mm × 8 mm × 8 mm (L×B×H) material was fabricated by adding five 1.6 mm thick plates. A similar coupled Eulerian-Lagrangian based finite element model was used to predict the effects of sound process parameters, such as the tool’s rotational speed and the translational speed. The temperature predicted by the model was used to predict the microhardness distribution in the sample and to further elucidate the hardness change in the weld zone, which showed a good agreement with the experimental results. The microstructure of the samples was analyzed, and the mechanical properties of the additive manufactured samples were characterized and compared with those of other AM techniques via tensile tests and tensile shear tests.</div>
|
113 |
Advancements in Joining Armor Grade SteelsEvans, William Charles January 2019 (has links)
No description available.
|
114 |
A Novel Characterization of Friction Stir Welds Created Using Active Temperature ControlPearl, David Lee 16 April 2021 (has links)
No description available.
|
115 |
Microstructural Evolution and Mechanical Response of Materials by Design and ModelingDutt, Aniket Kumar 05 1900 (has links)
Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction stir welded AA7050 alloy, which results in the lower predicted strength of friction stir welded alloy. Further, development of modeling assists in process optimization and innovation, and enhances the progression rate. Accelerating the development process requires coupling experimental methods with predictive modeling. The overall purpose of this work was to develop an integrated computational model with predictive capabilities. In the present work, an application tool to predict thermal histories during FSW of AA7050 was developed using COMSOL software.
|
116 |
Tool Degradation Characterization in the Friction Stir Welding of Hard MetalsThompson, Brian Thomas 30 July 2010 (has links)
No description available.
|
117 |
Cryogenic Processing of <em>Al 7050-T7451</em> Alloy for Improved Surface IntegrityHuang, Bo 01 January 2016 (has links)
Al 7050-T7451 alloy with good combinations of strength, stress corrosion cracking resistance and toughness, is used broadly in the aerospace/aviation industry for fatigue-critical airframe structural components. However, it is also considered as a highly anisotropic alloy as the crack growth behavior along the short transverse direction is very different from the one in the long transverse direction, due to the inhomogeneous microstructure with the elongated grains distributed in the work material used in the sheet/plate applications. Further processes on these materials are needed to improve its mechanical and material properties and broaden its applications.
The material with ultra-fine or nano grains exhibits improved wear and corrosion resistance, higher hardness and better fatigue life, compared to the one with coarse grains. In recent times, the development of novel processing technologies has gained great attention in the research community to enhance the properties of the materials employed in the aerospace, biomedical, precision instrument, automotive, nuclear/power industries. These novel processing technologies modify the microstructure of this alloy and improve the properties.
The aim of this dissertation is to investigate the effects of cryogenic processes, including friction stir processing (FSP), machining and burnishing, on Al 7050-T7451 alloy to solve the inhomogeneity issue and improve its surface integrity. FSP is applied to modify the microstructure of Al 7050-T7451 alloy for achieving more homogeneous structure with near ultra-fine grains (UFG) which were less than 2 µm, particularly in cryogenic FSP with liquid nitrogen as the coolant. Approximately 10% increase could be observed from the hardness measurement from the samples processed by cryogenic FSP, in contrast to dry FSP. Also, the texture change from Al (200) to Al (111) could be achieved in all the samples processed by dry and cryogenic FSP.
Cryogenic machining and burnishing processes were also applied to enhance the surface integrity of the manufactured components with near-UFG structure. The highest cutting temperature was reduced by up to 44.7% due to the rapid cooling effect of liquid nitrogen in cryogenic machining, compared with dry machining. Nano grains were produced in the refined layers induced by cryogenic burnishing. And, up to 35.4% hardness increase was obtained within the layer depth of 200 µm in the cryogenically-burnished surface.
A numerical finite element method (FEM) model was developed for predicting the process performance in burnishing. Less than 10% difference between the experimental and predicted burnishing forces was achieved in the simulation of cryogenic burnishing, and reasonable predictions were also achieved for temperatures, severe plastic deformation (SPD) layers.
|
118 |
Feasibility Study of Consolidation by Direct Compaction and Friction Stir Processing of Commercially Pure Titanium PowderNichols, Leannah Marie 08 1900 (has links)
Commercially pure titanium can take up to six months to successfully manufacture a six-inch in diameter ingot in which can be shipped to be melted and shaped into other useful components. The applications to the corrosion-resistant, light weight, strong metal are endless, yet so is the manufacturing processing time. At a cost of around $80 per pound of certain grades of titanium powder, the everyday consumer cannot afford to use titanium in the many ways it is beneficial simply because the number of processing steps it takes to manufacture consumes too much time, energy, and labor. In this research, the steps it takes from the raw powder form to the final part are proposed to be reduced from 4-8 steps to only 2 steps utilizing a new technology that may even improve upon the titanium properties at the same time as it is reducing the number of steps of manufacture. The two-step procedure involves selecting a cylindrical or rectangular die and punch to compress a small amount of commercially pure titanium to a strong-enough compact for transportation to the friction stir welder to be consolidated. Friction stir welding invented in 1991 in the United Kingdom uses a tool, similar to a drill bit, to approach a sample and gradually plunge into the material at a certain rotation rate of between 100 to 2,100 RPM. In the second step, the friction stir welder is used to process the titanium powder held in a tight holder to consolidate into a harder titanium form. The resulting samples are cut to expose the cross section and then grinded, polished, and cleaned to be observed and tested using scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and a Vickers microhardness tester. The results were that the thicker the sample, the harder the resulting consolidated sample peaking at 2 to 3 times harder than that of the original commercially pure titanium in solid form at a peak value of 435.9 hardness and overall average of 251.13 hardness. The combined results of the SEM and EDS have shown that the mixing of the sample holder material, titanium, and tool material were not of a large amount and therefore proves the feasibility of this study. This study should be continued to lessen the labor, energy, and cost of the production of titanium to therefore allow titanium to be improved upon and be more efficient for many applications across many industries.
|
119 |
Friction Stir Processing of Aluminum AlloysSun, Ning 04 September 2012 (has links)
Friction stir processing (FSP) has been developed based on the basic principles of friction stir welding (FSW), a solid-state joining process originally developed for aluminum alloys. What is attractive about FSP is that it can be incorporated in the overall manufacturing cycle as a post-processing step during the machining operation to provide localized modification and control of microstructures in near-surface layers of metallic components. FSP has emerged as an important post-processing technique, and has been identified as a process that may have a high impact, and perhaps is a disruptive manufacturing process. In this study, FSP has been applied to Al cast alloy A206, which is a high strength, widely used cast alloy in the manufacturing industry. Motivations behind this work are to (1) investigate the feasibility of FSP on manipulating the cast microstructure and strengthening the material, and (2) to explore the viability of FSP to produce a localized particle reinforced zone in cast A206 aluminum components. The thesis will show that we have optimized FSP for processing of Al alloys to locally manipulate the cast microstructure, eliminate casting defects, and attain grain refinement and second phase homogenization. We have established the mechanism leading to the microstructure evolution and have evaluated the resultant mechanical properties, i.e. hardness, tensile property and fatigue properties. We have also synthesized a localized composite material in the A206 work piece with three different reinforcement materials via FSP. These results will be presented and discussed.
|
120 |
Durabilité des assemblages soudés stir welding (FSW) : corrélation entre microstructure et sensibilité à la corrosion / Durability of friction stir welded joints on aircraft structures : relationship between microstructure and corrosion sensitivityBousquet, Emilie 21 July 2011 (has links)
Les assemblages soudés sont de plus en plus envisagés pour remplacer les assemblages par rivetage dans l’objectif d’alléger les structures aéronautiques. La technique de soudage par Friction Stir Welding (FSW) est la solution choisie pour souder sans apport extérieur de matière et en phase solide. Des assemblages soudés autogènes et hétérogènes d’alliages d’aluminium des familles 2XXX (Al-Cu-Mg et Al-Cu-Li) et 7XXX (Al-Zn-Mg) ont été étudiés. La sensibilité à la corrosion de ces soudures et leur tenue mécanique sous l’effet de l’environnement ont été évaluées avec une approche multi-échelle. Pour cela, des essais normalisés de corrosion ont d’abord été réalisés, suivis d’une analyse plus fine par des techniques électrochimiques locales qui a permis de quantifier la réactivité des différentes zones de la soudure. D’autre part, une analyse microstructurale a permis d’expliquer les comportements en corrosion de chacune de ces zones. Nous avons ainsi montré que, dans le cas des soudures autogènes, la microstructure était responsable des phénomènes de corrosion localisée tandis que, dans le cas des soudures hétérogènes, l’attaque était plus homogène sous l’effet de couplages galvaniques macroscopiques. / In order to lighten aircraft structures, welded joints are more and more considered to replace riveted joints. The Friction Stir welding process is the appropriate solution to join without addition of outer material and in semi-solid phase. Similar and dissimilar welded joints of 2XXX (Al-Cu-Mg and Al-Cu-Li) and 7XXX (Al-Zn-Cu) aluminium alloys were studied. Corrosion sensitivity of these welds and their stress corrosion cracking were evaluated with a multiscale approach. For this, first, normalized corrosion tests were performed; then, a finer analysis was carried out using local electrochemical techniques which allows to quantitate the reactivity of the different weld zones. In other hand, a microstructural analysis allowed to explain corrosion behaviours of each weld zone. We showed localized corrosion phenomena were restricted in the similar FSW joints because of microstructural heterogeneities whereas attack in dissimilar welds was more homogeneous under the effect of macroscopic galvanic coupling.
|
Page generated in 0.0578 seconds