Spelling suggestions: "subject:"stochastic differential aquation"" "subject:"stochastic differential cquation""
11 |
A second order Runge–Kutta method for the Gatheral modelAuffredic, Jérémy January 2020 (has links)
In this thesis, our research focus on a weak second order stochastic Runge–Kutta method applied to a system of stochastic differential equations known as the Gatheral Model. We approximate numerical solutions to this system and investigate the rate of convergence of our method. Both call and put options are priced using Monte-Carlo simulation to investigate the order of convergence. The numerical results show that our method is consistent with the theoretical order of convergence of the Monte-Carlo simulation. However, in terms of the Runge-Kutta method, we cannot accept the consistency of our method with the theoretical order of convergence without further research.
|
12 |
Deterministic Quadrature Formulae for the Black–Scholes ModelSaadat, Sajedeh, Kudljakov, Timo January 2021 (has links)
There exist many numerical methods for numerical solutions of the systems of stochastic differential equations. We choose the method of deterministic quadrature formulae proposed by Müller–Gronbach, and Yaroslavtseva in 2016. The idea is to apply a simplified version of the cubature in Wiener space. We explain the method and check how good it works in the simplest case of the classical Black–Scholes model.
|
13 |
Spatio-Temporal Analysis of Foraging Behaviors of Anelosimus studiosus Utilizing Mathematical Modeling of Multiple Spider Interaction on a Cooperative WebQuijano, Alex John, Joyner, Michele L., Ross, Chelsea, Watts, J. Colton, Seier, Edith, Jones, Thomas C. 07 November 2016 (has links)
In this paper, we develop a model for predation movements of a subsocial spider species, Anelosimus studiosus. We expand on a previous model to include multiple spider interaction on the web as well as a latency period during predation. We then use the model to test different spatial configurations to determine the optimal spacing of spiders within a colony for successful capture during predation. The model simulations indicate that spiders uniformly spacing out along the edge of the web results in the most successful predation strategy. This is similar to the behavior observed by Ross (2013) in which it was determined to be statistically significant that during certain times of the day, spiders were positioned along the edge more than expected under complete spatial randomness.
|
14 |
Parameter Estimation in Random Differential Equation ModelsBanks, H. T., Joyner, M. L. 01 January 2017 (has links)
We consider two distinct techniques for estimating random parameters in random differential equation (RDE) models. In one approach, the solution to a RDE is represented by a collection of solution trajectories in the form of sample deterministic equations. In a second approach we employ pointwise equivalent stochastic differential equation (SDE) representations for certain RDEs. Each of the approaches is tested using deterministic model comparison techniques for a logistic growth model which is viewed as a special case of a more general Bernoulli growth model. We demonstrate efficacy of the preferred method with experimental data using algae growth model comparisons.
|
15 |
Perturbation methods in derivatives pricing under stochastic volatilityKateregga, Michael 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: This work employs perturbation techniques to price and hedge financial derivatives in a
stochastic volatility framework. Fouque et al. [44] model volatility as a function of two processes
operating on different time-scales. One process is responsible for the fast-fluctuating
feature of volatility and corresponds to the slow time-scale and the second is for slowfluctuations
or fast time-scale. The former is an Ergodic Markov process and the latter is
a strong solution to a Lipschitz stochastic differential equation. This work mainly involves
modelling, analysis and estimation techniques, exploiting the concept of mean reversion of
volatility. The approach used is robust in the sense that it does not assume a specific volatility
model. Using singular and regular perturbation techniques on the resulting PDE a first-order
price correction to Black-Scholes option pricing model is derived. Vital groupings of market
parameters are identified and their estimation from market data is extremely efficient and
stable. The implied volatility is expressed as a linear (affine) function of log-moneyness-tomaturity
ratio, and can be easily calibrated by estimating the grouped market parameters
from the observed implied volatility surface. Importantly, the same grouped parameters
can be used to price other complex derivatives beyond the European and American options,
which include Barrier, Asian, Basket and Forward options. However, this semi-analytic perturbative
approach is effective for longer maturities and unstable when pricing is done close
to maturity. As a result a more accurate technique, the decomposition pricing approach
that gives explicit analytic first- and second-order pricing and implied volatility formulae is
discussed as one of the current alternatives. Here, the method is only employed for European
options but an extension to other options could be an idea for further research. The
only requirements for this method are integrability and regularity of the stochastic volatility
process. Corrections to [3] remarkable work are discussed here. / AFRIKAANSE OPSOMMING: Hierdie werk gebruik steuringstegnieke om finansiële afgeleide instrumente in ’n stogastiese
wisselvalligheid raamwerk te prys en te verskans. Fouque et al. [44] gemodelleer wisselvalligheid
as ’n funksie van twee prosesse wat op verskillende tyd-skale werk. Een proses
is verantwoordelik vir die vinnig-wisselende eienskap van die wisselvalligheid en stem
ooreen met die stadiger tyd-skaal en die tweede is vir stadig-wisselende fluktuasies of ’n
vinniger tyd-skaal. Die voormalige is ’n Ergodiese-Markov-proses en die laasgenoemde is
’n sterk oplossing vir ’n Lipschitz stogastiese differensiaalvergelyking. Hierdie werk behels
hoofsaaklik modellering, analise en skattingstegnieke, wat die konsep van terugkeer
to die gemiddelde van die wisseling gebruik. Die benadering wat gebruik word is rubuust
in die sin dat dit nie ’n aanname van ’n spesifieke wisselvalligheid model maak nie. Deur
singulêre en reëlmatige steuringstegnieke te gebruik op die PDV kan ’n eerste-orde pryskorreksie
aan die Black-Scholes opsie-waardasiemodel afgelei word. Belangrike groeperings
van mark parameters is geïdentifiseer en hul geskatte waardes van mark data is uiters
doeltreffend en stabiel. Die geïmpliseerde onbestendigheid word uitgedruk as ’n lineêre
(affiene) funksie van die log-geldkarakter-tot-verval verhouding, en kan maklik gekalibreer
word deur gegroepeerde mark parameters te beraam van die waargenome geïmpliseerde
wisselvalligheids vlak. Wat belangrik is, is dat dieselfde gegroepeerde parameters gebruik
kan word om ander komplekse afgeleide instrumente buite die Europese en Amerikaanse
opsies te prys, dié sluit in Barrier, Asiatiese, Basket en Stuur opsies. Hierdie semi-analitiese
steurings benadering is effektief vir langer termyne en onstabiel wanneer pryse naby aan
die vervaldatum beraam word. As gevolg hiervan is ’n meer akkurate tegniek, die ontbinding
prys benadering wat eksplisiete analitiese eerste- en tweede-orde pryse en geïmpliseerde
wisselvalligheid formules gee as een van die huidige alternatiewe bespreek. Hier
word slegs die metode vir Europese opsies gebruik, maar ’n uitbreiding na ander opsies
kan’n idee vir verdere navorsing wees. Die enigste vereistes vir hierdie metode is integreerbaarheid
en reëlmatigheid van die stogastiese wisselvalligheid proses. Korreksies tot [3] se
noemenswaardige werk word ook hier bespreek.
|
16 |
Bayesian stochastic differential equation modelling with application to financeAl-Saadony, Muhannad January 2013 (has links)
In this thesis, we consider some popular stochastic differential equation models used in finance, such as the Vasicek Interest Rate model, the Heston model and a new fractional Heston model. We discuss how to perform inference about unknown quantities associated with these models in the Bayesian framework. We describe sequential importance sampling, the particle filter and the auxiliary particle filter. We apply these inference methods to the Vasicek Interest Rate model and the standard stochastic volatility model, both to sample from the posterior distribution of the underlying processes and to update the posterior distribution of the parameters sequentially, as data arrive over time. We discuss the sensitivity of our results to prior assumptions. We then consider the use of Markov chain Monte Carlo (MCMC) methodology to sample from the posterior distribution of the underlying volatility process and of the unknown model parameters in the Heston model. The particle filter and the auxiliary particle filter are also employed to perform sequential inference. Next we extend the Heston model to the fractional Heston model, by replacing the Brownian motions that drive the underlying stochastic differential equations by fractional Brownian motions, so allowing a richer dependence structure across time. Again, we use a variety of methods to perform inference. We apply our methodology to simulated and real financial data with success. We then discuss how to make forecasts using both the Heston and the fractional Heston model. We make comparisons between the models and show that using our new fractional Heston model can lead to improve forecasts for real financial data.
|
17 |
股價目標區政策與經濟穩定性:聯立隨機微分方程式體系之應用 / Stock Price Target Zone Regime and Economic Stability: An Application of Simultaneous Stochastic Differential Equation System金俌均, Kim, Bo Gyun Unknown Date (has links)
This paper studies the endogenous evolution of investment behaviour under the various macroeconomic circumstances, which might be relatively constructed by free-float, fixed and target zone regimes as the economic stability policy. It applies the issues of stock price target zone policy to a simultaneous stochastic differential equation system. We construct the stochastic macro model which utilized the basic conception of Dornbusch [1976] with the different price adjustment mechanism. In addition, we intend to apply the topological method which used by Miller and Weller [1991] to analyze the general economic property from the non-recursive model. The main purpose of this paper is to discuss how the public’s expectation affects the dynamic loci of commodity and stock price when the public agents have the perfect or imperfect credibility. We utilize this model to investigate whether stock price target zone regime will have honeymoon effect or not, when the government announce to execute the stock price target zone policy in the various situations. Moreover, we discuss whether stock price target zone can simultaneously stabilize other variables in the different situations.
|
18 |
Stochastic information in the assessment of climate changeKleinen, Thomas Christopher January 2005 (has links)
<p>Stochastic information, to be understood as "information gained
by the application of stochastic methods", is proposed as a tool
in the assessment of changes in climate.</p>
<p>This thesis aims at demonstrating that stochastic information can
improve the consideration and reduction of uncertainty in the assessment
of changes in climate. The thesis consists of three parts. In part
one, an indicator is developed that allows the determination of the
proximity to a critical threshold. In part two, the tolerable windows
approach (TWA) is extended to a probabilistic TWA. In part three,
an integrated assessment of changes in flooding probability due to
climate change is conducted within the TWA.</p>
<p>The thermohaline circulation (THC) is a circulation system in the
North Atlantic, where the circulation may break down in a saddle-node
bifurcation under the influence of climate change. Due to uncertainty
in ocean models, it is currently very difficult to determine the distance
of the THC to the bifurcation point. We propose a new indicator to
determine the system's proximity to the bifurcation point by considering
the THC as a stochastic system and using the information contained
in the fluctuations of the circulation around the mean state. As the
system is moved closer to the bifurcation point, the power spectrum
of the overturning becomes "redder", i.e. more energy is
contained in the low frequencies. Since the spectral changes are a
generic property of the saddle-node bifurcation, the method is not
limited to the THC, but it could also be applicable to other systems,
e.g. transitions in ecosystems. </p>
<p>In part two, a probabilistic extension to the tolerable windows approach
(TWA) is developed. In the TWA, the aim is to determine the complete
set of emission strategies that are compatible with so-called guardrails.
Guardrails are limits to impacts of climate change or to climate change
itself. Therefore, the TWA determines the "maneuvering space"
humanity has, if certain impacts of climate change are to be avoided.
Due to uncertainty it is not possible to definitely exclude the impacts
of climate change considered, but there will always be a certain probability
of violating a guardrail. Therefore the TWA is extended to a probabilistic
TWA that is able to consider "probabilistic uncertainty", i.e.
uncertainty that can be expressed as a probability distribution or
uncertainty that arises through natural variability.</p>
<p>As a first application, temperature guardrails are imposed, and the
dependence of emission reduction strategies on probability distributions
for climate sensitivities is investigated. The analysis suggests that
it will be difficult to observe a temperature guardrail of 2°C with
high probabilities of actually meeting the target.</p>
<p>In part three, an integrated assessment of changes in flooding probability
due to climate change is conducted. A simple hydrological model is
presented, as well as a downscaling scheme that allows the reconstruction
of the spatio-temporal natural variability of temperature and precipitation.
These are used to determine a probabilistic climate impact response
function (CIRF), a function that allows the assessment of changes
in probability of certain flood events under conditions of a changed
climate. </p>
<p>The assessment of changes in flooding probability is conducted in
83 major river basins. Not all floods can be considered: Events that
either happen very fast, or affect only a very small area can not
be considered, but large-scale flooding due to strong longer-lasting
precipitation events can be considered. Finally, the probabilistic
CIRFs obtained are used to determine emission corridors, where the
guardrail is a limit to the fraction of world population that is affected
by a predefined shift in probability of the 50-year flood event. This
latter analysis has two main results. The uncertainty about regional
changes in climate is still very high, and even small amounts of further
climate change may lead to large changes in flooding probability in
some river systems.</p> / <p>Stochastische Information, zu verstehen als "Information, die
durch die Anwendung stochastischer Methoden gewonnen wird", wird
als Hilfsmittel in der Bewertung von Klimaänderungen vorgeschlagen.</p>
<p>Das Ziel dieser Doktorarbeit ist es, zu zeigen, dass stochastische
Information die Berücksichtigung und Reduktion von Unsicherheit in
der Bewertung des Klimawandels verbessern kann. Die Arbeit besteht
aus drei Teilen. Im ersten Teil wird ein Indikator entwickelt, der
die Bestimmung des Abstandes zu einem kritischen Grenzwert ermöglicht.
Im zweiten Teil wird der "tolerable windows approach" (TWA)
zu einem probabilistischen TWA erweitert. Im dritten Teil wird eine
integrierte Abschätzung der Veränderung von Überflutungswahrscheinlichkeiten
im Rahmen des TWA durchgeführt.</p>
<p>Die thermohaline Zirkulation (THC) ist ein Zirkulationssystem im Nordatlantik,
in dem die Zirkulation unter Einfluss des Klimawandels in einer Sattel-Knoten
Bifurkation abreißen kann. Durch Unsicherheit in Ozeanmodellen ist
es gegenwärtig kaum möglich, den Abstand des Systems zum Bifurkationspunkt
zu bestimmen. Wir schlagen einen neuen Indikator vor, der es ermöglicht,
die Nähe des Systems zum Bifurkationspunkt zu bestimmen. Dabei wird
die THC als stochastisches System angenommen, und die Informationen,
die in den Fluktuationen der Zirkulation um den mittleren Zustand
enthalten sind, ausgenutzt. Wenn das System auf den Bifurkationspunkt
zubewegt wird, wird das Leistungsspektrum "roter", d.h.
die tiefen Frequenzen enthalten mehr Energie. Da diese spektralen
Veränderungen eine allgemeine Eigenschaft der Sattel-Knoten Bifurkation
sind, ist die Methode nicht auf die THC beschränkt, sondern weitere
Anwendungen könnten möglich sein, beispielsweise zur Erkennung von
Übergängen in Ökosystemen.</p>
<p>Im zweiten Teil wird eine probabilistische Erweiterung des "tolerable
windows approach" (TWA) entwickelt. Das Ziel des TWA ist die Bestimmung
der Menge der Emissionsreduktionsstrategien, die mit sogenannten Leitplanken
kompatibel sind. Diese Leitplanken sind Begrenzungen der Auswirkungen
des Klimawandels, oder des Klimawandels selber. Der TWA bestimmt daher
den Spielraum, den die Menschheit hat, wenn bestimmte Auswirkungen
des Klimawandels vermieden werden sollen. Durch den Einfluss von Unsicherheit
ist es aber nicht möglich, die betrachteten Auswirkungen des Klimawandels
mit Sicherheit auszuschließen, sondern es existiert eine gewisse Wahrscheinlichkeit,
dass die Leitplanke verletzt wird. Der TWA wird daher zu einem probabilistischen
TWA weiterentwickelt, der es ermöglicht, "probabilistische Unsicherheit",
also Unsicherheit, die durch eine Wahrscheinlichkeitsverteilung ausgedrückt
werden kann, oder die durch den Einfluß von natürlicher Variabilität
entsteht, zu berücksichtigen.</p>
<p>Als erste Anwendung werden Temperaturleitplanken betrachtet, und die
Abhängigkeit der Emissionsreduktionsstrategien von Wahrscheinlichkeitsverteilungen
über die Klimasensitivität wird bestimmt. Die Analyse ergibt, dass
die Einhaltung einer Temperaturleitplanke von 2°C sehr schwierig wird,
wenn man hohe Wahrscheinlichkeiten des Einhaltens der Leitplanke fordert.</p>
<p>Im dritten Teil wird eine integrierte Abschätzung der Änderungen von
Überflutungswahrscheinlichkeiten unter Einfluss des Klimawandels durchgeführt.
Ein einfaches hydrologisches Modell wird vorgestellt, sowie ein Skalierungsansatz,
der es ermöglicht, die raum-zeitliche natürliche Variabilität von
Temperatur und Niederschlag zu rekonstruieren. Diese werden zur Bestimmung
einer probabilistischen Klimawirkungsfunktion genutzt, einer Funktion,
die es erlaubt, die Veränderungen der Wahrscheinlichkeit bestimmter
Überflutungsereignisse unter Einfluss von Klimaänderungen abzuschätzen.</p>
<p>Diese Untersuchung der Veränderung von Überflutungswahrscheinlichkeiten
wird in 83 großen Flusseinzugsgebieten durchgeführt. Nicht alle Klassen
von Überflutungen können dabei berücksichtigt werden: Ereignisse,
die entweder sehr schnell vonstatten gehen, oder die nur ein kleines
Gebiet betreffen, können nicht berücksichtigt werden, aber großflächige
Überflutungen, die durch starke, langanhaltende Regenfälle hervorgerufen
werden, können berücksichtigt werden. Zuguterletzt werden die bestimmten
Klimawirkungsfunktion dazu genutzt, Emissionskorridore zu bestimmen,
bei denen die Leitplanken Begrenzungen des Bevölkerungsanteils, der
von einer bestimmten Veränderung der Wahrscheinlichkeit eines 50-Jahres-Flutereignisses
betroffen ist, sind. Letztere Untersuchung hat zwei Hauptergebnisse.
Die Unsicherheit von regionalen Klimaänderungen ist immer noch sehr
hoch, und außerdem können in einigen Flusssystemen schon kleine Klimaänderungen
zu großen Änderungen der Überflutungswahrscheinlichkeit führen.</p>
|
19 |
Explicit numerical schemes of SDEs driven by Lévy noise with super-linear coeffcients and their application to delay equationsKumar, Chaman January 2015 (has links)
We investigate an explicit tamed Euler scheme of stochastic differential equation with random coefficients driven by Lévy noise, which has super-linear drift coefficient. The strong convergence property of the tamed Euler scheme is proved when drift coefficient satisfies one-sided local Lipschitz condition whereas diffusion and jump coefficients satisfy local Lipschitz conditions. A rate of convergence for the tamed Euler scheme is recovered when local Lipschitz conditions are replaced by global Lipschitz conditions and drift satisfies polynomial Lipschitz condition. These findings are consistent with those of the classical Euler scheme. New methodologies are developed to overcome challenges arising due to the jumps and the randomness of the coefficients. Moreover, as an application of these findings, a tamed Euler scheme is proposed for the stochastic delay differential equation driven by Lévy noise with drift coefficient that grows super-linearly in both delay and non-delay variables. The strong convergence property of the tamed Euler scheme for such SDDE driven by Lévy noise is studied and rate of convergence is shown to be consistent with that of the classical Euler scheme. Finally, an explicit tamed Milstein scheme with rate of convergence arbitrarily close to one is developed to approximate the stochastic differential equation driven by Lévy noise (without random coefficients) that has super-linearly growing drift coefficient.
|
20 |
Teoria de rough paths via integração algebrica / Rough paths theory via algebraic integrationCastrequini, Rafael Andretto, 1984- 14 August 2018 (has links)
Orientador: Pedro Jose Catuogno / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatística e Computação Cientifica / Made available in DSpace on 2018-08-14T14:39:55Z (GMT). No. of bitstreams: 1
Castrequini_RafaelAndretto_M.pdf: 934326 bytes, checksum: e4c45bc1efde09bbe52710c44eab8bbf (MD5)
Previous issue date: 2009 / Resumo: Introduzimos a teoria dos p-rough paths seguindo a abordagem de M. Gubinelli, conhecida por integração algébrica. Durante toda a dissertação nos restringimos ao caso 1 </= p < 3, o que e suficiente para lidar com trajetórias do movimento Browniano e aplicações ao Cálculo Estocástico. Em seguida, estudamos as equações diferenciais associadas aos rough paths, onde nós conectamos a abordagem de A. M. Davie (as equações) e a abordagem de M. Gubinelli (as integrais). No final da dissertação, aplicamos a teoria de rough path ao cálculo estocástico, mais precisamente relacionando as integrais de Itô e Stratonovich com a integral ao longo de caminhos. / Abstract: We introduce p-Rough Path Theory following M. Gubinelli_s approach, as known as algebraic integration. Throughout this masters thesis, we are concerned only in the case where 1 </= p < 3, witch is enough to deal with trajectories of a Brownnian motion and some applications to Stochastic Calculus. Afterwards, we study differential equations related to rough paths, where we connect the approach of A. M. Davie to equations with the approach of M. Gubinelli to integrals. At the end of this work, we apply the theory of rough paths to stochastic calculus, more precisely, we related the integrals of Itô and Stratonovich to integral along paths. / Mestrado / Sistemas estocasticos / Mestre em Matemática
|
Page generated in 0.143 seconds