Spelling suggestions: "subject:"stomata"" "subject:"tomata""
91 |
Reducing Phreatophyte TranspirationDavenport, David C. 16 April 1977 (has links)
From the Proceedings of the 1977 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 15-16, 1977, Las Vegas, Nevada / Transpiration rates (T) of riparian phreatophytes can be high. Antitranspirant (AT) sprays can curtail T without the ecological imbalance made by eradication. Saltcedar (Tamarix sp.) and cottonwood (Populus sp.) in 15-gal. drums enabled replicated trials on isolated plants or on canopies. T of isolate saltcedar plants could be 2x that of plants in a fairly dense canopy. T for a unit ground area of saltcedar varied from 2.2 (sparse -) to 15.8 (dense-stand) mm/day in July at Davis. Extrapolation of experimental T data to field sites must, therefore, be made carefully. Wax -based ATs increased foliar diffusive resistance (R), and reduced T of saltcedar and cottonwood 32-38% initially and 10% after 3 weeks. R increased naturally in the afternoon when evaporative demand was high and if soil water was low. Nocturnal T of salt cedar was 10% of day T. AT effectiveness increased with a higher ratio of day: night hours, and with lower soil water stress. Therefore, AT will be most effective on long summer days in riparian areas where ground water is available.
|
92 |
A Reconnaissance Study of Water and Carbon Fluxes in Tropical Watersheds of Peninsular Malaysia: Stable Isotope ConstraintsIshak, Muhammad Izzuddin Syakir 04 February 2014 (has links)
Evapotranspiration is a nexus for planetary energy and carbon cycles, as yet poorly constrained. Here I use stable isotopes of oxygen and hydrogen to partition flux of water due to plant transpiration from the direct evaporative flux from soils, water bodies and plant. The study areas, Langat and Kelantan watersheds represent examples of domains dominated by the respective Southwest and Northeast monsoons on the two sides of the main orographic barrier (Titiwangsa mountain range). Mean annual rainfall for the Langat watershed, obtained from 30 years of hydrological data, is 2145 ± 237 mm. Tentatively, 48% of this precipitation returns to the atmosphere via transpiration (T), with 33% partitioned into discharge (Q), 8% into interception (In), and 11% into evaporation (Ed). In the Kelantan watershed, the mean annual rainfall, also based on the 30 year hydrological data, is 2383 ± 120 mm. Similar to Langat, the T accounts for 43% of precipitation (P), 45% is discharged into South China Sea (Q), 12% partitioned into interception (In) and tentatively 0% for evaporation (Ed). Ed for the Langat watershed represents only a small proportion in terms of volumetric significance, up to almost ~11% with strong effect on the isotopic fingerprints of waters associated with the summer Southwest Monsoon (SWM). Note, however, that insignificant Ed for the Kelantan watershed may be an artefact of rain and river water sampling at only coastal downstream portion of the watershed. High humidity (80%) also was recorded for the Malaysian Peninsula watershed.
T appropriates about half of all solar energy absorbed by the continents, here ~1000*103 g H2O m-2 yr-1 similar to other tropical regions at 900-1200*103 g H2O m-2 yr-1. The associated carbon fluxes are ~ 1300 g C m-2yr-1, independent of P. Vegetation responses to solar irradiance, via T and photosynthesis reflects the importance of stomatal regulation of the water and carbon fluxes. In order to maintain high transpiration in the tropical region, “constant” water supply is required for continuous pumping of water that delivers nutrients to the plant, suggesting that water and carbon cycle are co-driven by the energy of the sun. The existence of the water conveyor belt may be precondition for nutrient delivery, hence operation of the carbon cycle. Potentially, this may change our perspective on the role that biology plays in the water cycle. In such perspective, the global water cycle is the medium that redistributes the incoming solar energy across the planet, and the anatomical structures of plants then help to optimize the loop of energy transfer via evaporation and precipitation in the hydrologic cycle.
The main features of aquatic geochemistry of the Langat and Kelantan rivers inferred from the Principal Component Analysis are controlled by three components that explain 80% and 82% of total variances. These components are reflecting of the geogenic factor with superimposed pollution, the latter particularly pronounced in urbanized sections of the Langat river and dominant in downstream of the Kelantan river. There is no correlation between seasonal variations in major ion chemistry and environmental variables such as precipitation, discharge, temperature or solar activity.
|
93 |
A Reconnaissance Study of Water and Carbon Fluxes in Tropical Watersheds of Peninsular Malaysia: Stable Isotope ConstraintsIshak, Muhammad Izzuddin Syakir January 2014 (has links)
Evapotranspiration is a nexus for planetary energy and carbon cycles, as yet poorly constrained. Here I use stable isotopes of oxygen and hydrogen to partition flux of water due to plant transpiration from the direct evaporative flux from soils, water bodies and plant. The study areas, Langat and Kelantan watersheds represent examples of domains dominated by the respective Southwest and Northeast monsoons on the two sides of the main orographic barrier (Titiwangsa mountain range). Mean annual rainfall for the Langat watershed, obtained from 30 years of hydrological data, is 2145 ± 237 mm. Tentatively, 48% of this precipitation returns to the atmosphere via transpiration (T), with 33% partitioned into discharge (Q), 8% into interception (In), and 11% into evaporation (Ed). In the Kelantan watershed, the mean annual rainfall, also based on the 30 year hydrological data, is 2383 ± 120 mm. Similar to Langat, the T accounts for 43% of precipitation (P), 45% is discharged into South China Sea (Q), 12% partitioned into interception (In) and tentatively 0% for evaporation (Ed). Ed for the Langat watershed represents only a small proportion in terms of volumetric significance, up to almost ~11% with strong effect on the isotopic fingerprints of waters associated with the summer Southwest Monsoon (SWM). Note, however, that insignificant Ed for the Kelantan watershed may be an artefact of rain and river water sampling at only coastal downstream portion of the watershed. High humidity (80%) also was recorded for the Malaysian Peninsula watershed.
T appropriates about half of all solar energy absorbed by the continents, here ~1000*103 g H2O m-2 yr-1 similar to other tropical regions at 900-1200*103 g H2O m-2 yr-1. The associated carbon fluxes are ~ 1300 g C m-2yr-1, independent of P. Vegetation responses to solar irradiance, via T and photosynthesis reflects the importance of stomatal regulation of the water and carbon fluxes. In order to maintain high transpiration in the tropical region, “constant” water supply is required for continuous pumping of water that delivers nutrients to the plant, suggesting that water and carbon cycle are co-driven by the energy of the sun. The existence of the water conveyor belt may be precondition for nutrient delivery, hence operation of the carbon cycle. Potentially, this may change our perspective on the role that biology plays in the water cycle. In such perspective, the global water cycle is the medium that redistributes the incoming solar energy across the planet, and the anatomical structures of plants then help to optimize the loop of energy transfer via evaporation and precipitation in the hydrologic cycle.
The main features of aquatic geochemistry of the Langat and Kelantan rivers inferred from the Principal Component Analysis are controlled by three components that explain 80% and 82% of total variances. These components are reflecting of the geogenic factor with superimposed pollution, the latter particularly pronounced in urbanized sections of the Langat river and dominant in downstream of the Kelantan river. There is no correlation between seasonal variations in major ion chemistry and environmental variables such as precipitation, discharge, temperature or solar activity.
|
94 |
A History of Place: Using Phytolith Analysis to Discern Holocene Vegetation Change on Sanak Island, Western Gulf of AlaskaWilbur, Cricket C. January 2013 (has links)
No description available.
|
95 |
Ecophysiological traits and their responses to drought in species from the Balearic Islands with different growth formsGalmés Galmés, Jeroni 13 March 2006 (has links)
Amb l'objectiu d'analitzar com la biodiversitat i l'adaptació al clima mediterrani es tradueixen en una diversitat de trets ecofisiològics i la seva resposta a la sequera, i d'estudiar si aquesta diversitat està relacionada amb formes de creixement i amb la història evolutiva de les espècies, es van seleccionar 24 espècies mediterrànies de les Illes Balears. Es va analitzar la capacitat germinativa, els efectes de la sequera en el creixement de plàntules, respostes ecofisiològiques a la sequera a nivell foliar i l'adaptació de l'especificitat de la Rubisco. Es va observar una elevada variabilitat entre espècies, la meitat de la qual associada a les diferents formes de creixement. No s'observà cap diferenciació entre les espècies endèmiques i les no endèmiques. Aquesta elevada diversitat en els trets ecofisiològics i la seva resposta a la sequera suposa un recurs potencial per identificar caràcters adaptatius i un banc genètic per millorar la productivitat de cultius. / Con el objetivo de analizar como la biodiversidad y la adaptación al clima mediterráneo se traducen en una diversidad de caracteres ecofisiológicos y su respuesta a la sequía, y de estudiar si esta diversidad está relacionada con formas de crecimiento y con la historia evolutiva de las especies, se seleccionaron 24 especies mediterráneas de las Islas Baleares. Se analizaron la capacidad germinativa, los efectos de la sequía sobre el crecimiento de las plántulas, las respuestas ecofisiológicas a la sequía a nivel foliar y la adaptación de la especificidad de la Rubisco. Se observó una elevada variabilidad entre especies, la mitad de la cual asociada a las diferentes formas de crecimiento. No se encontraron diferencias entre las especies endémicas y las no endémicas. Esta elevada biodiversidad en respuesta a la sequía supone un recurso potencial para identificar caracteres adaptativos y un banco genético para la mejora de la productividad de cultivos. / The objectives of this work were to analyze how biodiversity and adaptation to Mediterranean climate is reflected in a diversity of ecophysiological traits and their responses to drought, and to study whether such diversity was related to growth forms and endemicity. The analysis covered the germination capacity, the effects of drought on seedling growth, the leaf ecophysiological responses to drought, and the adaptation of Rubisco specificity, in 24 Mediterranean species from the Balearic Islands. A wide range of variation has been observed among the species, with about half of this variability associated to different growth forms. However, no differentiation was found between endemic and non-endemic species of the Balearic Islands. The high diversity in the ecophysiological traits and their responses to drought found among Mediterranean species must be considered as a 'resource' to identify target adaptive traits for breeding plans, but also as a genetic bank to improve crop productivity.
|
Page generated in 0.0406 seconds