• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Prediction of properties and optimal design of microstructure of multi-phase and multi-layer C/SiC composites / La prédiction des propriétés et l'optimisation de la microstructure ds composites multi-phases et multi-couches C/SiC

Xu, Yingjie 08 July 2011 (has links)
Les matériaux composites à matrice de carbure de silicium renforcée par des fibres decarbone (C/SiC) sont des composites à matrice céramique (CMC), très prometteurs pour desapplications à haute température, comme le secteur aéronautique. Dans cette thèse, sontmenées des études particulières concernant les propriétés de ces matériaux : prédiction despropriétés mécanique (élastiques), analyses thermiques (optimisation des contraintesthermiques), simulation de l’oxydation à haute température.Une méthode basée sur l’énergie de déformation est proposée pour la prédiction desconstantes élastiques et des coefficients de dilatation thermiques de matériaux compositesorthotropes 3D. Dans cette méthode, les constantes élastiques et les coefficients de dilatationthermique sont obtenus en analysant la relation entre l'énergie de déformation de lamicrostructure et celle du modèle homogénéisé équivalent sous certaines conditions auxlimites thermiques et élastiques. Différents types de matériaux composites sont testés pourvalider le modèle.Différentes configurations géométriques du volume élémentaire représentatif des compositesC/SiC (2D tissés et 3D tressés) sont analysées en détail. Pour ce faire, la méthode énergétiquea été couplée à une analyse éléments finis. Des modèles EF des composites C/SiC ont étédéveloppés et liés à cette méthode énergétique pour évaluer les constantes élastiques et lescoefficients de dilatation thermique. Pour valider la modélisation proposée, les résultatsnumériques sont ensuite comparés à des résultats expérimentaux.Pour poursuivre cette analyse, une nouvelle stratégie d'analyse « globale/locale »(multi-échelle) est développée pour la détermination détaillée des contraintes dans lesstructures composites 2D tissés C/SiC. Sur la base de l'analyse par éléments finis, laprocédure effectue un passage de la structure composite homogénéisée (Echelle macro :modèle global) au modèle détaillé de la fibre (Echelle micro : modèle local). Ce passage entreles deux échelles est réalisé à partir des résultats de l'analyse globale et des conditions auxlimites du modèle local. Les contraintes obtenues via cette approche sont ensuite comparées àcelles obtenues à l’aide d’une analyse EF classique.IVLa prise des contraintes résiduelles thermiques (contraintes d’origine thermique dans lesfibres et la matrice) joue un rôle majeur dans le comportement des composites à matricescéramiques. Leurs valeurs influencent fortement la contrainte de microfissuration de lamatrice. Dans cette thèse, on cherche donc à minimiser cette contrainte résiduelle thermique(TRS) par une méthode d’optimisation de type métaheuristique: Particle Swarm Optimization(PSO), Optimisation par essaims particulaires.Des modèles éléments finis du volume élémentaire représentatif de composites 1-Dunidirectionnels C/SiC avec des interfaces multi-couches sont générés et une analyse paréléments finis est réalisée afin de déterminer les contraintes résiduelles thermiques. Unschéma d'optimisation couple l'algorithme PSO avec la MEF pour réduire les contraintesrésiduelles thermiques dans les composites C/SiC en optimisant les épaisseurs des interfacesmulti-couches.Un modèle numérique est développé pour étudier le processus d'oxydation de microstructureet la dégradation des propriétés élastiques de composites 2-D tissés C/SiC oxydant àtempérature intermédiaire (T<900°C). La microstructure du volume élémentaire représentatifde composite oxydé est modélisée sur la base de la cinétique d'oxydation. La méthode del'énergie de déformation est ensuite appliquée au modèle éléments finis de la microstructureoxydé pour prédire les propriétés élastiques des composites. Les paramètres d'environnement,à savoir, la température et la pression, sont étudiées pour voir leurs influences sur lecomportement d'oxydation de composites C/SiC. / Carbon fiber-reinforced silicon carbide matrix (C/SiC) composite is a ceramic matrixcomposite (CMC) that has considerable promise for use in high-temperature structuralapplications. In this thesis, systematic numerical studies including the prediction of elasticand thermal properties, analysis and optimization of stresses and simulation ofhigh-temperature oxidations are presented for the investigation of C/SiC composites.A strain energy method is firstly proposed for the prediction of the effective elastic constantsand coefficients of thermal expansion (CTEs) of 3D orthotropic composite materials. Thismethod derives the effective elastic tensors and CTEs by analyzing the relationship betweenthe strain energy of the microstructure and that of the homogenized equivalent model underspecific thermo-elastic boundary conditions. Different kinds of composites are tested tovalidate the model.Geometrical configurations of the representative volume cell (RVC) of 2-D woven and 3-Dbraided C/SiC composites are analyzed in details. The finite element models of 2-D wovenand 3-D braided C/SiC composites are then established and combined with the stain energymethod to evaluate the effective elastic constants and CTEs of these composites. Numericalresults obtained by the proposed model are then compared with the results measuredexperimentally.A global/local analysis strategy is developed for the determination of the detailed stresses inthe 2-D woven C/SiC composite structures. On the basis of the finite element analysis, theprocedure is carried out sequentially from the homogenized composite structure of themacro-scale (global model) to the parameterized detailed fiber tow model of the micro-scale(local model). The bridge between two scales is realized by mapping the global analysisresult as the boundary conditions of the local tow model. The stress results by global/localmethod are finally compared to those by conventional finite element analyses.Optimal design for minimizing thermal residual stress (TRS) in 1-D unidirectional C/SiCcomposites is studied. The finite element models of RVC of 1-D unidirectional C/SiCIIcomposites with multi-layer interfaces are generated and finite element analysis is realized todetermine the TRS distributions. An optimization scheme which combines a modifiedParticle Swarm Optimization (PSO) algorithm and the finite element analysis is used toreduce the TRS in the C/SiC composites by controlling the multi-layer interfaces thicknesses.A numerical model is finally developed to study the microstructure oxidation process and thedegradation of elastic properties of 2-D woven C/SiC composites exposed to air oxidizingenvironments at intermediate temperature (T<900°C). The oxidized RVC microstructure ismodeled based on the oxidation kinetics analysis. The strain energy method is then combinedwith the finite element model of oxidized RVC to predict the elastic properties of composites.The environmental parameters, i.e., temperature and pressure are studied to show theirinfluences upon the oxidation behavior of C/SiC composites.
52

Comparison of fatigue analysis approaches for predicting fatigue lives of hot-mix asphalt concrete (HMAC) mixtures

Walubita, Lubinda F. 16 August 2006 (has links)
Hot-mix asphalt concrete (HMAC) mixture fatigue characterization constitutes a fundamental component of HMAC pavement structural design and analysis to ensure adequate field fatigue performance. HMAC is a heterogeneous complex composite material of air, binder, and aggregate that behaves in a non-linear elasto-viscoplastic manner, exhibits anisotropic behavior, ages with time, and heals during traffic loading rest periods and changing environmental conditions. Comprehensive HMAC mixture fatigue analysis approaches that take into account this complex nature of HMAC are thus needed to ensure adequate field fatigue performance. In this study, four fatigue analysis approaches; the mechanistic empirical (ME), the calibrated mechanistic with (CMSE) and without (CM) surface energy measurements, and the proposed NCHRP 1-37A 2002 Pavement Design Guide (MEPDG) were comparatively evaluated and utilized to characterize the fatigue resistance of two Texas HMAC mixtures in the laboratory, including investigating the effects of binder oxidative aging. Although the results were comparable, the CMSE/CM approaches exhibited greater flexibility and potential to discretely account for most of the fundamental material properties (including fracture, aging, healing, visco-elasticity, and anisotropy) that affect HMAC pavement fatigue performance. Compared to the other approaches, which are mechanistic-empirically based, the CMSE/CM approaches are based on the fundamental concepts of continuum micromechanics and energy theory.
53

Comparison of fatigue analysis approaches for predicting fatigue lives of hot-mix asphalt concrete (HMAC) mixtures

Walubita, Lubinda F. 16 August 2006 (has links)
Hot-mix asphalt concrete (HMAC) mixture fatigue characterization constitutes a fundamental component of HMAC pavement structural design and analysis to ensure adequate field fatigue performance. HMAC is a heterogeneous complex composite material of air, binder, and aggregate that behaves in a non-linear elasto-viscoplastic manner, exhibits anisotropic behavior, ages with time, and heals during traffic loading rest periods and changing environmental conditions. Comprehensive HMAC mixture fatigue analysis approaches that take into account this complex nature of HMAC are thus needed to ensure adequate field fatigue performance. In this study, four fatigue analysis approaches; the mechanistic empirical (ME), the calibrated mechanistic with (CMSE) and without (CM) surface energy measurements, and the proposed NCHRP 1-37A 2002 Pavement Design Guide (MEPDG) were comparatively evaluated and utilized to characterize the fatigue resistance of two Texas HMAC mixtures in the laboratory, including investigating the effects of binder oxidative aging. Although the results were comparable, the CMSE/CM approaches exhibited greater flexibility and potential to discretely account for most of the fundamental material properties (including fracture, aging, healing, visco-elasticity, and anisotropy) that affect HMAC pavement fatigue performance. Compared to the other approaches, which are mechanistic-empirically based, the CMSE/CM approaches are based on the fundamental concepts of continuum micromechanics and energy theory.
54

Ανάπτυξη μεθοδολογίας για την αξιολόγηση της ποιότητας των χυτών κραμάτων αλουμινίου για χρήση σε ελαφρές κατασκευές / Development of a methodology for the evaluation of the quality of cast aluminium alloys to be wed in light-weight structures

Αλεξόπουλος, Νικόλαος Διον. 25 June 2007 (has links)
Ο χαρακτηρισμός της ποιότητας των χυτών κραμάτων αλουμινίου , γίνεται μέχρι σήμερα μέσω του χαρακτηρισμού της ποιότητας της μικροδομής, μετρήσεων σκληρότητας και πειραμάτων κρούσης και σε μικρότερο βαθμό, δοκιμών εκφυλισμού. Στην παρούσα διατριβή, προτείνεται ένας νέος εμπειρικός δείκτης για τον ποσοτικοποιημένο χαρακτηρισμό της ποιότητας χυτών κραμάτων αλουμινίου. Ο προτεινόμενος δείκτης αξιολογεί την ποιότητα ενός υλικού από την πλευρά του μηχανικού που σχεδιάζει ένα κατασκευαστικό στοιχείο και επομένως την αξιολογεί ως την ικανότητα του υλικού για μηχανικές επιδόσεις. Για την αξιολόγηση αυτή ο προτεινόμενος δείκτης συνεκτιμά την αντοχή και την ολκιμότητα του υλικού σε εκφυλισμό. Παράλληλα, για το χαρακτηρισμό της ποιότητας, ο δείκτης παίρνει υπόψη τη δυσθραυσότητα του υλικού καθώς και τη διασπορά των μηχανικών ιδιοτήτων του υλικού. Η διατύπωση του δείκτη στηρίχτηκε σε έναν ευρείας έκτασης πειραματικό χαρακτηρισμό της μηχανικής συμπεριφοράς σε εφελκυσμό καθώς και της μικροδομής των κυριότερων αεροπορικών χυτών κραμάτων αλουμινίου σε συνάρτηση με τη μεταβολή α) της χημικής σύστασης, β) του ρυθμού στερεοποίησης και γ) της θερμικής κατεργασίας αυτών καθώς και στη διατύπωση εμπειρικών συναρτήσεων για την εξάρτηση των μηχανικών ιδιοτήτων των κραμάτων που εξετάστηκαν από τις παραπάνω μεταβολές των παραμέτρων χύτευσης. Προκειμένου να διευκολυνθεί η αξιοποίηση του δείκτη, διατυπώθηκαν απλουστευμένες προσεγγιστικές εκφράσεις που επιτρέπουν τον υπολογισμό του από δεδομένα των απλών πειραμάτων της σκληρομέτρησης και της κρούσης. Τέλος προτάθηκε μεθοδολογία δημιουργίας χαρτών ποιότητας με βάση τον προταθέντα δείκτη για την υποστήριξη της επιλογής υλικού όταν είναι γνωστές οι απαιτήσεις σε μηχανικές επιδόσεις συγκεκριμένων κατασκευαστικών στοιχείων. / Quality evaluation of cast aluminum alloys is currently made mainly by means of the met- allographic characterization of the alloy’s niicrostructure, hardness measurements, impact tests and, to a lesser extend, tensile tests, are involved, as well. Yet, the overall decision is not a straight forward procedure, relies heavily on the experience of the quality engineer and involves an appreciable amount of subjective judgment. In the present Thesis, a new empirical quality index for the quantitative evaluation of the quality of cast aluminum alloys is introduced. The proposed index evaluates quality which is regarded as the ability of a material for mechanical performance. The index evaluates the quality of a cast alloy on the basis of a balance between the material’s tensile strength and ductility with regard also to the material’s toughness. In the proposed index the scatter in mechanical properties is also accounted. The formulation of the index has been based on an extensive experimental characterization of the tensile behavior and the microstructural features of the main aircraft aluminum cast alloys by varying chemical composition, solidification rate and artificial aging treat- ment. To facilitate the wide spread use of the index, simplified approximate expressions of the index have been formulated as well. These expressions allow for the calculation of the proposed quality index based on hardness measurements and impact test results. The index has been also exploited to devise quality maps, which may be used to support material selection with regard to the mechanical properties required by the design office for a certain application.
55

Topologieoptimierung im Creo-Umfeld mit ProTopCI

Simmler, Urs 22 July 2016 (has links)
Wikipedia umschreibt die Topologieoptimierung als ein computerbasiertes Berechnungsverfahren, durch welches eine günstige Grundgestalt (Topologie) für Bauteile unter mechanischer Belastung ermittelt werden kann. Durch die Verwendung von 3D-Druck-Verfahren wird die Gestaltung der Komponenten revolutioniert, weil diese nicht mehr abhängig vom Fertigungsverfahren sind. Dabei werden auch optimale Gitterstrukturen innerhalb der Komponenten immer wichtiger. Diese neuen Herausforderungen können im Creo Umfeld mit ProTopCI (Hersteller CAESS, PTC Partner Advantage, Silver) elegant gelöst werden. Im Vortrag (mit Live-Demonstration) werden die neuen Möglichkeiten dieser innovativen Lösung beleuchtet: Modellerzeugung in Creo Simulate (FEM-Mode): - Verschiedene Lastfälle, - Kontakte, - Schraubenverbindungen, - CAD-Geometrie, - zu optimierende Bereiche, ... Technologische Randbedingungen zur Berücksichtigung des Fertigungsverfahren Innovatives Erzeugen/Optimieren der Gitterstrukturen Glätten, Exportieren der optimierten Geometrie
56

[pt] AVALIAÇÃO DE ÍNDICES MODAIS PARA IDENTIFICAÇÃO DE DANOS EM PASSARELAS METÁLICAS / [en] EVALUATION OF MODAL INDICES FOR DAMAGE IDENTIFICATION ON STEEL FOOTBRIDGES

AUGUSTO CESAR MIRANDA FEIJAO 27 June 2023 (has links)
[pt] Dentre as diversas metodologias de detecção de danos, destacam-se os métodos de identificação de danos baseados na resposta da vibração (Vibration-based damage identification - VBDI), uma vez que a deterioração presente em elementos estruturais influencia diretamente na resposta dinâmica global e local da estrutura ocasionando alterações nos parâmetros dinâmicos. As diferentes abordagens encontradas na revisão de literatura para detecção dinâmica de danos focam principalmente em estruturas unidimensionais ou retas, que, por sua vez, podem não representar o comportamento dinâmico real de estruturas arrojadas como pontes e passarelas com geometria diferenciada. Alguns índices modais, nomeadamente curvatura modal, flexibilidade modal e energia de deformação modal, foram avaliados para uma passarela de aço com geometria curva. Para isso utilizou-se um modelo de elementos finitos da mesma, de onde foram extraídos os modos de vibração tridimensionais. Além disso, um índice recentemente proposto, denominado vetor resultante, que incorpora coordenadas modais tridimensionais, também é avaliado e comparado aos índices mencionados anteriormente. Os resultados mostram que a precisão dos índices na localização de danos está correlacionada com a região da estrutura onde o dano se encontra. Conclui-se então que para detecção de dano em uma estrutura real, é necessário que se utilize mais de um índice de dano. O impacto da magnitude do dano na acurácia dos índices é também estudado. A influência do dano nas vigas adjacentes e como isso se reflete nos índices também é investigada, a fim de evitar ambiguidade na localização de danos, e para direcionar corretamente programas de inspeção e monitoramento da integridade estrutural. / [en] Among the various damage detection methodologies, the Vibration-based damage identification (VBDI) methods stand out, since the deterioration present in structural elements directly influences the global and local dynamic response of the structure, causing changes in the dynamic parameters. The different approaches found in the literature review for dynamic damage detection focus mainly on one-dimensional or straight structures, which in turn may not represent the actual dynamic behavior of bold structures such as bridges and footbridges with different geometry. Some modal indices, namely modal curvature, modal flexibility, and modal strain energy were evaluated for a steel footbridge with curved geometry. For this purpose, a finite element model of it was used, from which the three-dimensional mode shapes were extracted. In addition, a recently proposed index, called resultant vector, which incorporates three-dimensional modal coordinates, is also evaluated and compared to the aforementioned ones. The results show that the accuracy of the indices for damage localization is correlated with the region of the structure where the damage is located. It is then concluded that for damage detection in a real structure, it is necessary to use more than one damage index. The impact of the damage magnitude on the accuracy of the indices is also studied. The influence of damage in adjacent beams and how this is reflected in the indices is also investigated in order to avoid ambiguity in damage location, and to correctly direct inspections and structural integrity monitoring programs.
57

Multifunctional Laminated Composites for Morphing Structures

Chillara, Venkata Siva Chaithanya 13 September 2018 (has links)
No description available.
58

Crack path selection and shear toughening effects due to mixed mode loading and varied surface properties in beam-like adhesively bonded joints

Guan, Youliang 17 January 2014 (has links)
Structural adhesives are widely used with great success, and yet occasional failures can occur, often resulting from improper bonding procedures or joint design, overload or other detrimental service situations, or in response to a variety of environmental challenges. In these situations, cracks can start within the adhesive layer or debonds can initiate near an interface. The paths taken by propagating cracks can affect the resistance to failure and the subsequent service lives of the bonded structures. The behavior of propagating cracks in adhesive joints remains of interest, including when some critical environments, complicated loading modes, or uncertainties in material/interfacial properties are involved. From a mechanics perspective, areas of current interest include understanding the growth of damage and cracks, loading rate dependency of crack propagation, and the effect of mixed mode fracture loading scenarios on crack path selection. This dissertation involves analytical, numerical, and experimental evaluations of crack propagation in several adhesive joint configurations. The main objective is an investigation of crack path selection in adhesively bonded joints, focusing on in-plane fracture behavior (mode I, mode II, and their combination) of bonded joints with uniform bonding, and those with locally weakened interfaces. When removing cured components from molds, interfacial debonds can sometimes initiate and propagate along both mold surfaces, resulting in the molded product partially bridging between the two molds and potentially being damaged or torn. Debonds from both adherends can sometimes occur in weak adhesive bonds as well, potentially altering the apparent fracture behavior. To avoid or control these multiple interfacial debonding, more understanding of these processes is required. An analytical model of 2D parallel bridging was developed and the interactions of interfacial debonds were investigated using Euler-Bernoulli beam theory. The numerical solutions to the analytical results described the propagation processes with multiple debonds, and demonstrated some common phenomena in several different joints corresponding to double cantilever beam configurations. The analytical approach and results obtained could prove useful in extensions to understanding and controlling debonding in such situations and optimization of loading scenarios. Numerical capabilities for predicting crack propagation, confirmed by experimental results, were initially evaluated for crack behavior in monolithic materials, which is also of interest in engineering design. Several test cases were devised for modified forms of monolithic compact tension specimens (CT) were developed. An asymmetric variant of the CT configuration, in which the initial crack was shifted to two thirds of the total height, was tested experimentally and numerically simulated in ABAQUS®, with good agreement. Similar studies of elongated CT specimens with different specimen lengths also revealed good agreement, using the same material properties and cohesive zone model (CZM) parameters. The critical specimen length when the crack propagation pattern abruptly switches was experimentally measured and accurately predicted, building confidence in the subsequent studies where the numerical method was applied to bonded joints. In adhesively bonded joints, crack propagation and joint failure can potentially result from or involve interactions of a growing crack with a partially weakened interface, so numerical simulations were initiated to investigate such scenarios using ABAQUS®. Two different cohesive zone models (CZMs) are applied in these simulations: cohesive elements for strong and weak interfaces, and the extended finite element method (XFEM) for cracks propagating within the adhesive layer. When the main crack approaches a locally weakened interface, interfacial damage can occur, allowing for additional interfacial compliance and inducing shear stresses within the adhesive layer that direct the growing crack toward the weak interface. The maximum traction of the interfacial CZM appears to be the controlling parameter. Fracture energy of the weakened interface is shown to be of secondary importance, though can affect the results when particularly small (e.g. 1% that of the bulk adhesive). The length of the weakened interface also has some influence on the crack path. Under globally mixed mode loadings, the competition between the loading and the weakened interface affects the shear stress distribution and thus changes the crack path. Mixed mode loading in the opposite direction of the weakened interface is able to drive the crack away from the weakened interface, suggesting potential means to avoid failure within these regions or to design joints that fail in a particular manner. In addition to the analytical and numerical studies of crack path selection in adhesively bonded joints, experimental investigations are also performed. A dual actuator load frame (DALF) is used to test beam-like bonded joints in various mode mixity angles. Constant mode mixity angle tracking, as well as other versatile loading functions, are developed in LabVIEW® for use with a new controller system. The DALF is calibrated to minimize errors when calculating the compliance of beam-like bonded joints. After the corrections, the resulting fracture energies ( ) values are considered to be more accurate in representing the energy released in the crack propagation processes. Double cantilever beam (DCB) bonded joints consisting of 6061-T6 aluminum adherends bonded with commercial epoxy adhesives (J-B Weld, or LORD 320/322) are tested on the DALF. Profiles of the values for different constant mode mixity angles, as well as for continuously increasing mode mixity angle, are plotted to illustrate the behavior of the crack in these bonded joints. Finally, crack path selection in DCB specimens with one of the bonding surfaces weakened was studied experimentally, and rate-dependency of the crack path selection was found. Several contamination schemes are attempted, involving of graphite flakes, silicone tapes, or silane treatments on the aluminum oxide interfaces. In all these cases, tests involving more rapid crack propagation resulted in interfacial failures at the weakened areas, while slower tests showed cohesive failure throughout. One possible explanation of this phenomenon is presented using the rate-dependency of the yield stress (commonly considered to be corresponding to the maximum traction) of the epoxy adhesives. These experimental observations may have some potential applications tailoring adhesive joint configurations and interface variability to achieve or avoid particular failure modes. / Ph. D.
59

Dynamic Mixed-Mode Fracture of Bonded Composite Joints for Automotive Crashworthiness

Pohlit, David Joseph 20 July 2007 (has links)
An experimental evaluation of the mixed-mode fracture behavior of bonded composite joints is presented. Commonly used experimental techniques for characterizing the mode I, mixed-mode I/II, mode II, and mode III fracture behavior have been employed for the purpose of developing a fracture envelope to be utilized in the automotive design process. These techniques make use of such test geometries as the double cantilever beam (DCB), asymmetric double cantilever beam (ADCB), single-leg bend (SLB), end-loaded split (ELS), and split cantilever beam (SCB) specimens. Symmetric versions of the DCB, SLB, and ELS specimens produced mode mixities of 0°, 41°, and 90° respectively, while the testing of ADCB specimens allowed for mode mixities of 18°, 31°. Pronounced stick-slip behavior was observed for all specimen test geometries under both quasi-static and dynamic loading conditions. Due to the nature of the adhesive studied, a limited number of data points were obtained under mode I loading conditions. A significant increase in the number of measurable crack initiation events was observed for mixed-mode I/II loading conditions, where stick slip behavior was less pronounced. Additionally, a comparison of the measured fracture energies obtained under mixed-mode I/II loading conditions reveals that the addition of a small mode II component results in a decrease in the mode I fracture energy by roughly 50%, as the crack was driven to the interface between the adhesive layer and composite adherends. Furthermore, the propensity of debonds to propagate into the woven composite laminate adherends under mode II loading conditions limited the number of crack initiation points that could be obtained to one or two usable data points per specimen. A limited number of experimental tests using the SCB specimen for mode III fracture characterization, combined with a numerical analysis via finite element analysis, revealed a significant mode II contribution toward the specimen edges. Similarly, FE analyses on full bond width and half bond width SCB specimens was conducted, and results indicate that by inducing a bond width reduction of 50%, the mode II contribution is greatly decreased across the entire width of the specified crack front. To provide a means for comparison to results obtained using the standard DCB specimen, an alternative driven wedge test specimen geometry was analyzed, as this geometry provided a significant increase in the number of measurable data points under mode I loading conditions. A three-dimensional finite element analysis was conducted to establish ratios of simple beam theory results to those obtained via FEA, GSBT/GFEA, were of particular interest, as these ratios were used to establish correction factors corresponding to specific crack lengths to be used in correcting results obtained from an experimental study utilizing a driven wedge technique. Corrected results show good agreement with results obtained from traditional mode I double cantilever beam tests. Finally, bulk adhesive experiments were conducted on compact tension specimens to establish a correlation between adhesively bonded composite joint and bulk adhesive fracture behavior under mode I loading conditions. Measured fracture energy values were shown to gradually drop across a range of applied loading rates, similar to the rate-dependent behavior observed with both the DCB and driven wedge specimens. Application of the time-temperature superposition principle was explored to determine whether or not such techniques were suitable for predicting the fracture behavior of the adhesive studied herein. Good correlation was established between the fracture energy values measured and the value of tan d obtained from dynamic mechanical analysis tests conducted at corresponding reduced test rates. / Master of Science
60

Experimental analysis and numerical fatigue modeling for magnesium sheet metals

Dallmeier, Johannes 16 September 2016 (has links) (PDF)
The desire for energy and resource savings brings magnesium alloys as lightweight materials with high specific strength more and more into the focus. Most structural components are subjected to cyclic loading. In the course of computer aided product development, a numerical prediction of the fatigue life under these conditions must be provided. For this reason, the mechanical properties of the considered material must be examined in detail. Wrought magnesium semifinished products, e.g. magnesium sheet metals, typically reveal strong basal textures and thus, the mechanical behavior considerably differs from that of the well-established magnesium die castings. Magnesium sheet metals reveal a distinct difference in the tensile and compressive yield stress, leading to non-symmetric sigmoidal hysteresis loops within the elasto-plastic load range. These unusual hysteresis shapes are caused by cyclic twinning and detwinning. Furthermore, wrought magnesium alloys reveal pseudoelastic behavior, leading to nonlinear unloading curves. Another interesting effect is the formation of local twin bands during compressive loading. Nevertheless, only little information can be found on the numerical fatigue analysis of wrought magnesium alloys up to now. The aim of this thesis is the investigation of the mechanical properties of wrought magnesium alloys and the development of an appropriate fatigue model. For this purpose, twin roll cast AM50 as well as AZ31B sheet metals and extruded ME21 sheet metals were used. Mechanical tests were carried out to present a comprehensive overview of the quasi-static and cyclic material behavior. The microstructure was captured on sheet metals before and after loading to evaluate the correlation between the microstructure, the texture, and the mechanical properties. Stress- and strain-controlled loading ratios and strain-controlled experiments with variable amplitudes were performed. Tests were carried out along and transverse to the manufacturing direction to consider the influence of the anisotropy. Special focus was given to sigmoidal hysteresis loops and their influence on the fatigue life. A detailed numerical description of hysteresis loops is necessary for numerical fatigue analyses. For this, a one-dimensional phenomenological model was developed for elasto-plastic strain-controlled constant and variable amplitude loading. This model consists of a three-component equation, which considers elastic, plastic, and pseudoelastic strain components. Considering different magnesium alloys, good correlation is reached between numerically and experimentally determined hysteresis loops by means of different constant and variable amplitude load-time functions. For a numerical fatigue life analysis, an energy based fatigue parameter has been developed. It is denoted by “combined strain energy density per cycle” and consists of a summation of the plastic strain energy density per cycle and the 25 % weighted tensile elastic strain energy density per cycle. The weighting represents the material specific mean stress sensitivity. Applying the energy based fatigue parameter on modeled hysteresis loops, the fatigue life is predicted adequately for constant and variable amplitude loading including mean strain and mean stress effects. The combined strain energy density per cycle achieves significantly better results in comparison to conventional fatigue models such as the Smith-Watson-Topper model. The developed phenomenological model in combination with the combined strain energy density per cycle is able to carry out numerical fatigue life analyses on magnesium sheet metals.

Page generated in 0.0812 seconds