• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of the freshwater mussel community of the upper Mahoning River watershed and factors influencing diversity and abundance in small streams

Begley, Matthew T. 16 January 2015 (has links)
No description available.
2

Impacts of Impervious Surface Cover on Stream Hydrology and Stream-Reach Morphology, Northern Georgia

Young, Benjamin J. 05 August 2010 (has links)
No description available.
3

The Geomorphic Influence of Agricultural Land Use on Stream Hydraulics and Biological Function

Payn, Robert Alden 09 July 2004 (has links)
Agricultural land use near streams frequently results in long-term disturbance to woody riparian vegetation and an alteration of reach scale geomorphic structure. Such disturbances often result in increased fine sediment input to the stream along with direct changes in channel structure. The study described here was designed to quantify stream geomorphic changes associated with agriculture and their influence on reach scale transient storage hydraulics and sediment biological function. Six small streams in the Appalachian Mountains of western North Carolina were selected to compare 3 reaches with active near-stream agriculture to 3 forested reference reaches. The study site categories differed significantly in many structural and hydraulic properties including slope, sinuosity, sediment size, and transient storage extent. However, differences cannot be attributed to land use alone. Distinct disparity in slope suggests that many of the categorical differences between stream types may also reflect valley scale structure. Despite these larger scale controls, the abundance of suspendable fines varied substantially among agricultural stream substrates, possibly due to varied land-use practices. Suspendable fine sediments and valley slope explained 91 % of variability in transient storage exchange, and abundance of inorganic fine sediments explained 77 % of variability in sediment microcosm nitrate production. This study supports conclusions that reach-scale influence of fine sediments occurred within the context of larger-scale valley structure, with implications on stream hydraulics and biogeochemistry. / Master of Science
4

Hydrological and biogeochemical dynamics of nitrate production and removal at the stream – ground water interface

Zarnetske, Jay P. 07 September 2011 (has links)
The feedbacks between hydrology and biogeochemical cycling of nitrogen (N) are of critical importance to global bioavailable N budgets. Human activities are dramatically increasing the amount of bioavailable N in the biosphere, which is causing increasingly frequent and severe impacts on ecosystems and human welfare. Streams are important features in the landscape for N cycling, because they integrate many sources of terrestrially derived N and control export to downgradient systems via internal source and sink processes. N transformations in stream ecosystems are typically very complex due to spatiotemporal variability in the factors controlling N biogeochemistry. Thus, it is difficult to predict if a particular stream system will function as a net source or sink of bioavailable N. A key location for N transformations in stream ecosystems is the hyporheic zone, where stream and ground waters mix. The hyporheic zone can be a source of bioavailable N via nitrification or a sink via denitrification. These N transformations are regulated by the physical and biogeochemical conditions of hyporheic zones. Natural heterogeneity in streams leads to unique combinations of both the physical and biogeochemical conditions which in turn result in unique N source and sink conditions. This dissertation investigates the relationships between physical and biogeochemical controls and the resulting fate of bioavailable N in hyporheic zones. The key physical factor investigated is the supply rate of solutes which is a function of transport processes - advection and dispersion, and transport conditions - hydraulic conductivity and flowpath length. Different physical conditions result in different characteristic residence times of water and solutes in hyporheic zones. The key biogeochemical factors investigated are the dynamics of oxygen (O₂), labile dissolved organic carbon (DOC), and inorganic bioavailable N (NH₄⁺ and NO₃⁻). This dissertation uses ¹⁵N isotope experiments, numerical modeling of coupled transport of the bioavailable N species, O₂ and DOC, and a suite of geophysical measurements to identify the key linkages between hydrological and biogeochemical controls on N transformations in hyporheic zones. Specifically, it was determined that the conditions governing the fate of hyporheic N are both the physical transport and reaction kinetics – the residence time of water and the O2 uptake rate. An important scaling relationship is developed by relating the characteristic timescales of residence time and O₂ uptake. The resulting dimensionless relationship, the Damköhler number for O₂, is useful for scaling different streams hyporheic zones and their role on stream N source – sink dynamics. More generally, these investigations demonstrate that careful consideration and quantification of hydrological processes can greatly inform the investigation of aquatic biogeochemical dynamics and lead to the development of process-based knowledge. In turn, this process-based knowledge will facilitate more robust approaches to quantifying and predicting biogeochemical cycles and budgets. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 21, 2011 - March 21, 2012

Page generated in 0.0404 seconds