Spelling suggestions: "subject:"stromal cells"" "subject:"stromal wells""
121 |
Oberflächenentigen- und Sehnenmarkerexpression equiner multipotenter mesenchymaler StromazellenPäbst, Felicitas Miriam Thekla 22 March 2016 (has links)
1. Einleitung Multipotente mesenchymale Stromazellen (MSC) stellen eine interessante Therapieoption in der regenerativen Medizin verschiedener Erkrankungen dar. Aufgrund ihrer Herkunft aus mesodermalem Gewebe ist ihr Einsatz in der Therapie von Sehnenerkrankungen als günstig anzusehen, wo sie bei Pferden bereits erfolgreich verwendet werden. Da dieser Erkrankungskomplex mit degenerativen Veränderungen der Achillessehne des Menschen vergleichbar ist, wäre eine Translation der gewonnenen Ergebnisse in die Humanmedizin wünschenswert. Die zugrunde liegenden Wirkmechanismen bei der Sehnenregeneration sind allerdings bis zum heutigen Tage noch nicht vollständig geklärt. Unter anderem wird eine tenogene Differenzierung der MSC mit nachfolgender Produktion von extrazellulärer Matrix (EZM) diskutiert. Als Nachweis hierfür wird die Genexpression von Matrixproteinen sowie Transkriptionsfaktoren angesehen. Die Isolation von MSC ist aus verschiedenen Geweben möglich; allerdings haben Untersuchungen deutliche Unterschiede in den in-vitro-Charakteristika zwischen den Zellquellen aufgezeigt. Trotz dieser unterschiedlichen Eigenschaften fasst die International Society for Cellular Therapy (ISCT) seit 2006 humane MSC als plastikadhärente Zellen mit tripotentem Differenzierungspotential sowie einem definierten Antigenprofil zusammen. Um eine Vergleichbarkeit equiner und humaner MSC und somit eine bessere Übertragbarkeit gewonnener Erkenntnisse aus der Pferdemedizin zu erreichen, steht aktuell die Untersuchung der geforderten Antigenexpression noch aus.
2. Ziele der Untersuchung In der vorliegenden Arbeit sollte daher erstmalig eine vollständige Charakterisierung des geforderten Antigenprofils equiner MSC aus fünf verschiedenen Quellen durchgeführt werden, um einen Vergleich mit humanen Zellen zu ermöglichen. Zudem sollte eine vergleichende Darstellung der Sehnenmarkerexpression durchgeführt werden, welche das Wissen um die in-vitro-Eigenschaften von MSC erweitern und in Folge zur Auswahl einer optimal für die Therapie von Sehnenerkrankungen geeigneten Zellquelle beitragen soll.
3. Materialien und Methoden In der ersten Studie wurden equine MSC aus Knochenmark, Fettgewebe, Nabelschnurblut, Nabelschnurgewebe und Sehnengewebe bis zur Passage 3 kultiviert und anschließend mittels Durchflusszytometrie auf das Vorkommen der Antigene CD 29, CD 44, CD 73, CD 90 und CD 105 sowie das Fehlen der Antigene CD 14, CD 34, CD 45, CD 79α und MHC II untersucht. In der zweiten Studie wurde eine Genexpressionsanalyse der Sehnenmarker Kollagen 1A2, Kollagen 3A1, Decorin, Tenascin-C und Skleraxis vergleichend mittels Echtzeitpolymerasekettenreaktion an den isolierten Zellen durchgeführt. In beiden Studien wurde eine Probenzahl von n= 6 für jede Zellquelle untersucht.
4. Ergebnisse Keine der untersuchten Zellquellen erfüllte die MSC-Definition der ISCT bezüglich des Antigenprofils. Insbesondere durch den fehlenden Nachweis CD 73 (< 3,07 %) in allen untersuchten Proben unterscheiden sich equine und humane MSC. Die einzigen stabil exprimierten Antigene sind die zusätzlich untersuchten Proteine CD 29 (37,5 % - 65,42 %) und CD 44 (32,2 % - 97,18 %). Das Vorkommen CD 105 konnte in MSC aus Fett- und Sehnengewebe belegt werden. Zusätzlich war ein Nachweis von CD 90 in MSC aus Fettgewebe möglich, welche somit die größte Ähnlichkeit mit der humanen Zellpopulation aufweisen. Die Studie zur Genexpressionsanalyse weist auf eine Basisexpression von Kollagen 1A2, 3A1 und Decorin in MSC aus verschiedenen Quellen hin, welche über der von nativem Sehnengewebe liegt. Auch hier weisen wiederum MSC aus Fettgewebe die höchste Expression auf.
5. Schlussfolgerungen Die vorliegende Arbeit leistet einen Beitrag zu einer vertiefenden in-vitroCharakterisierung equiner MSC. Das Antigenprofil equiner MSC ist nicht vollständig mit dem humaner identisch. Eine abschließende Beurteilung sollte durch Untersuchungen mit spezies-spezifischen Antikörpern erfolgen. Die Ergebnisse der Genexpressionsanalyse unterstützen die Theorie, dass MSC die Sehnenheilung durch Produktion von extrazellulärer Matrix beeinflussen. Der Einsatz von MSC aus Fettgewebe in der Therapie von Sehnenerkrankungen sollte forciert werden, da ihre hohe Sehnenmarkerexpression einen Hinweis auf eine Verbesserung der Sehnenregeneration darstellt.
|
122 |
Progesterone Antagonizes the Positive Influence of Estrogen on Chlamydia Trachomatis Serovar E in an Ishikawa/SHT-290 Co-Culture ModelKintner, Jennifer, Schoborg, Robert V., Wyrick, Priscilla B., Hall, Jennifer V. 01 June 2015 (has links)
Studies indicate that estrogen enhances Chlamydia trachomatis serovar E infection in genital epithelial cells. Hormones have direct and indirect effects on endometrial epithelial cells. Estrogen and progesterone exposure induces endometrial stromal cells to release effectors that subsequently regulate growth and maturation of uterine epithelial cells. Estrogen enhances C. trachomatis infection by aiding entry and intracellular development in endometrial epithelial cell (Ishikawa, IK)/SHT-290 stromal cell co-culture. Enhanced chlamydial infection was mediated by direct estrogen-stimulated signaling events in epithelial cells and indirectly via estrogen-induced stromal cell effectors. The current study investigates the effects of hormones on chlamydial development using culture conditions representative of the menstrual cycle. Chlamydia trachomatis-infected IK or IK/SHT-290 cultures were exposed to 10(-8) M estrogen (E2), 10(-7) M progesterone (P4) or a combination of both hormones (10(-8) M E2 followed by 10(-9) M E2/10(-7) M P4). Chlamydial infectivity and progeny production were significantly decreased (30-66%) in cultures exposed to progesterone or estrogen/progesterone combination compared to estrogen alone. Thus, progesterone antagonized the positive effects of estrogen on chlamydial infection. These data indicate the susceptibility of endometrial epithelial cells to C. trachomatis infection during the menstrual cycle is altered by phase specific actions of sex hormones in the genital tract.
|
123 |
A Biomechanical Investigation of Collagen, Platelet-rich Plasma, and Mesenchymal Stromal Cells on the Achilles Tendon in a Rat ModelAustin, Brittany Logan 28 May 2019 (has links)
No description available.
|
124 |
Exploiting the use of mesenchymal stromal cells genetically engineered to overexpress insulin-like growth factor-1 in gene therapy of chronic renal failureKucic, Terrence. January 2007 (has links)
No description available.
|
125 |
MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic MechanismsRoth, Susanne Pauline, Burk, Janina, Brehm, Walter, Troillet, Antonia 08 June 2023 (has links)
Mesenchymal stromal cells (MSC) represent a promising treatment option for tendon
disorders and joint diseases, primarily osteoarthritis. Since MSC are highly context-sensitive to their microenvironment, their therapeutic efficacy is influenced by their
tissue-specific pathologically altered targets. These include not only cellular
components, such as resident cells and invading immunocompetent cells, but also
components of the tissue-characteristic extracellular matrix. Although numerous in vitro
models have already shown potential MSC-related mechanisms of action in tendon and
joint diseases, only a limited number reflect the disease-specific microenvironment and
allow conclusions about well-directed MSC-based therapies for injured tendon and joint-associated tissues. In both injured tissue types, inflammatory processes play a pivotal
pathophysiological role. In this context, MSC-mediated macrophage modulation seems to
be an important mode of action across these tissues. Additional target cells of MSC
applied in tendon and joint disorders include tenocytes, synoviocytes as well as other
invading and resident immune cells. It remains of critical importance whether the context-sensitive interplay between MSC and tissue- and disease-specific targets results in an
overall promotion or inhibition of the desired therapeutic effects. This review presents the
authors’ viewpoint on disease-related targets of MSC therapeutically applied in tendon and
joint diseases, focusing on the equine patient as valid animal model.
|
126 |
Functional properties of equine adipose-derived mesenchymal stromal cells cultured with equine platelet lysateHagen, Alina, Niebert, Sabine, Brandt, Vivian-Pascal, Holland, Heidrun, Melzer, Michaela, Wehrend, Axel, Burk, Janina 02 November 2023 (has links)
Successful translation of multipotent mesenchymal stromal cell (MSC)-based therapies into clinical reality relies on adequate cell production procedures. These should be available not only for human MSC, but also for MSC from animal species relevant to preclinical research and veterinary medicine. The cell culture medium supplementation is one of the critical aspects in MSC production. Therefore, we previously established a scalable protocol for the production of buffy-coat based equine platelet lysate (ePL). This ePL proved to be a suitable alternative to fetal bovine serum (FBS) for equine adipose-derived (AD-) MSC culture so far, as it supported AD-MSC proliferation and basic characteristics. The aim of the current study was to further analyze the functional properties of equine AD-MSC cultured with the same ePL, focusing on cell fitness, genetic stability and pro-angiogenic potency. All experiments were performed with AD-MSC from n = 5 horses, which were cultured either in medium supplemented with 10% FBS, 10% ePL or 2.5% ePL. AD-MSC cultured with 2.5% ePL, which previously showed decreased proliferation potential, displayed higher apoptosis but lower senescence levels as compared to 10% ePL medium (p < 0.05). Non-clonal chromosomal aberrations occurred in 8% of equine AD-MSC cultivated with FBS and only in 4.8% of equine AD-MSC cultivated with 10% ePL. Clonal aberrations in the AD-MSC were neither observed in FBS nor in 10% ePL medium. Analysis of AD-MSC and endothelial cells in an indirect co-culture revealed that the ePL supported the pro-angiogenic effects of AD-MSC. In the 10% ePL group, more vascular endothelial growth factor (VEGF-A) was released and highest VEGF-A concentrations were reached in the presence of ePL and co-cultured cells (p < 0.05). Correspondingly, AD-MSC expressed the VEGF receptor-2 at higher levels in the presence of ePL (p < 0.05). Finally, AD-MSC and 10% ePL together promoted the growth of endothelial cells and induced the formation of vessel-like structures in two of the samples. These data further substantiate that buffy-coat-based ePL is a valuable supplement for equine AD-MSC culture media. The ePL does not only support stable equine AD-MSC characteristics as demonstrated before, but it also enhances their functional properties.
|
127 |
Bone marrow mesenchymal stromal cell-derived extracellular matrix displays altered glycosaminoglycan structure and impaired functionality in Myelodysplastic SyndromesBains, Amanpreet Kaur, Behrens Wu, Lena, Rivière, Jennifer, Rother, Sandra, Magno, Valentina, Friedrichs, Jens, Werner, Carsten, Bornhäuser, Martin, Götze, Katharina S., Cross, Michael, Platzbecker, Uwe, Wobus, Manja 24 November 2023 (has links)
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of
hematologic malignancies characterized by clonal hematopoiesis, one or
more cytopenias such as anemia, neutropenia, or thrombocytopenia,
abnormal cellular maturation, and a high risk of progression to acute myeloid
leukemia. The bone marrow microenvironment (BMME) in general and
mesenchymal stromal cells (MSCs) in particular contribute to both the
initiation and progression of MDS. However, little is known about the role of
MSC-derived extracellularmatrix (ECM) in this context. Therefore, we performed
a comparative analysis of in vitro deposited MSC-derived ECM of different MDS
subtypes and healthy controls. Atomic force microscopy analyses demonstrated
that MDS ECM was significantly thicker and more compliant than those from
healthy MSCs. Scanning electron microscopy showed a dense meshwork of
fibrillar bundles connected by numerous smaller structures that span the
distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures
were detectable at high abundance in MDS ECM as white, sponge-like arrays
on top of the fibrillar network. Quantification by Blyscan assay confirmed these
observations, with higher concentrations of sulfated GAGs in MDS ECM.
Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin
demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan
(HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of Nacetyl-
galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed
between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the
matrix of MSCs from LR-MDS patients were found to correlate with enhanced
HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells
from healthy donors with low molecular weight HA resulted in an increased
expression of various pro-inflammatory cytokines suggesting a contribution of
the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic
stem and progenitor cells (HSPCs) displayed an impaired differentiation potential
after cultivation on MDS ECM and modified morphology accompanied by
decreased integrin expression which mediate cell-matrix interaction. In
summary, we provide evidence for structural alterations of the MSC-derived
ECM in both LR- and HR-MDS. GAGs may play an important role in this
remodeling processes during the malignant transformation which leads to the
observed disturbance in the support of normal hematopoiesis.
|
128 |
Platelet Lysate for Mesenchymal Stromal Cell Culture in the Canine and Equine Species: Analogous but Not the SameHagen, Alina, Holland, Heidrun, Brandt, Vivian-Pascal, Doll, Carla U., Häußler, Thomas C., Melzer, Michaela, Moellerberndt, Julia, Lehmann, Hendrik, Burk, Janina 02 June 2023 (has links)
Simple Summary
Regenerative medicine using platelet-based blood products or adult stem cells offers the prospect of better clinical outcomes with many diseases. In veterinary medicine, most progress has been made with the development and therapeutic use of these regenerative therapeutics in horses, but the clinical need is given in dogs as well. Our aim was to transfer previous advances in the development of horse regenerative therapeutics, specifically the use of platelet lysate for feeding stem cell cultures, to the dog. Here, we describe the scalable production of canine platelet lysate, which could be used in regenerative biological therapies. We also evaluated the canine platelet lysate for its suitability in feeding canine stem cell cultures in comparison to equine platelet lysate used for equine stem cell cultures. Platelet lysate production from canine blood was successful, but the platelet lysate did not support stem cell culture in dogs in the same beneficial way observed with the equine platelet lysate and stem cells. In conclusion, canine platelet lysate can be produced in large scales as described here, but further research is needed to improve the cultivation of canine stem cells.
Abstract
Platelet lysate (PL) is an attractive platelet-based therapeutic tool and has shown promise as xeno-free replacement for fetal bovine serum (FBS) in human and equine mesenchymal stromal cell (MSC) culture. Here, we established a scalable buffy-coat-based protocol for canine PL (cPL) production (n = 12). The cPL was tested in canine adipose MSC (n = 5) culture compared to FBS. For further comparison, equine adipose MSC (n = 5) were cultured with analogous equine PL (ePL) or FBS. During canine blood processing, platelet and transforming growth factor-β1 concentrations increased (p < 0.05 and p < 0.001), while white blood cell concentrations decreased (p < 0.05). However, while equine MSC showed good results when cultured with 10% ePL, canine MSC cultured with 2.5% or 10% cPL changed their morphology and showed decreased metabolic activity (p < 0.05). Apoptosis and necrosis in canine MSC were increased with 2.5% cPL (p < 0.05). Surprisingly, passage 5 canine MSC showed less genetic aberrations after culture with 10% cPL than with FBS. Our data reveal that using analogous canine and equine biologicals does not entail the same results. The buffy-coat-based cPL was not adequate for canine MSC culture, but may still be useful for therapeutic applications.
|
129 |
Mitochondrial Transfer by Human Mesenchymal Stromal Cells Ameliorates Hepatocyte Lipid Load in a Mouse Model of NASHHsu, Mei-Ju, Karkossa, Isabel, Schäfer, Ingo, Christ, Madlen, Kühne, Hagen, Schubert, Kristin, Rolle-Kampczyk, Ulrike E., Kalkhof, Stefan, Nickel, Sandra, Seibel, Peter, von Bergen, Martin, Christ, Bruno 13 April 2023 (has links)
Mesenchymal stromal cell (MSC) transplantation ameliorated hepatic lipid load; tissue inflammation; and fibrosis in rodent animal models of non-alcoholic steatohepatitis (NASH) by as yet largely unknown mechanism(s). In a mouse model of NASH; we transplanted bone marrow-derived MSCs into the livers; which were analyzed one week thereafter. Combined metabolomic and proteomic data were applied to weighted gene correlation network analysis (WGCNA) and subsequent identification of key drivers. Livers were analyzed histologically and biochemically. The mechanisms of MSC action on hepatocyte lipid accumulation were studied in co-cultures of hepatocytes and MSCs by quantitative image analysis and immunocytochemistry. WGCNA and key driver analysis revealed that NASH caused the impairment of central carbon; amino acid; and lipid metabolism associated with mitochondrial and peroxisomal dysfunction; which was reversed by MSC treatment. MSC improved hepatic lipid metabolism and tissue homeostasis. In co-cultures of hepatocytes and MSCs; the decrease of lipid load was associated with the transfer of mitochondria from the MSCs to the hepatocytes via tunneling nanotubes (TNTs). Hence; MSCs may ameliorate lipid load and tissue perturbance by the donation of mitochondria to the hepatocytes. Thereby; they may provide oxidative capacity for lipid breakdown and thus promote recovery from NASH-induced metabolic impairment and tissue injury.
|
130 |
Defining the Next-Generation Umbilical Cord-Derived Cell Therapy for Treatment of Bronchopulmonary DysplasiaCyr-Depauw, Chanèle 30 January 2023 (has links)
Bronchopulmonary dysplasia (BPD) is a chronic lung disease and one of the most severe complications that develop in premature infants following mechanical ventilation, exposure to supplemental oxygen, and inflammation. The hallmarks of the lung pathology are arrested lung development, including fewer and larger alveoli with less septation, thickening of alveolar septa, and impaired development of the capillary network. BPD is associated with increased mortality, respiratory morbidity, neurodevelopmental impairment, and increased healthcare costs. Significant advancements in neonatology in the last several decades, including antenatal steroids
and exogenous surfactant replacement therapy, more gentle ventilation methods, and judicious oxygen use, have allowed for the survival of more preterm infants. However, the incidence of BPD still remains high and currently, there is no cure for the disease. Novel effective interventions at this stage of life are of exceptional value.
Considering their great potential in promoting tissue regeneration and modulating
inflammation, mesenchymal stromal cells (MSCs) represent a promising avenue for treating several disorders, including BPD. Umbilical cord-derived MSCs (UC-MSCs) offer biological advantages over other MSC sources (easily available, high proliferative capacity, and better repair efficacy). Pioneering work in our lab showed that MSCs prevent injury to the developing lung in a rat model mimicking BPD. However, there are still considerable challenges that must be overcome before MSCs can be effectively implemented in clinical trials. As such, UC-MSC heterogeneity is poorly understood, with concerns regarding variations from donors and batches. Thus, to improve the reproducibility of basic research and clinical applications, and to identify the optimal therapeutic cell product, better molecular characterization of UC-MSCs and the development of standardized BPD models will be essential in the clinical translation of MSC therapy for BPD. Moreover, considering that BPD is a disease of prematurity, the therapeutic potential of UC-MSCs isolated from preterm birth is of major interest.
In the study presented here, using single-cell RNA sequencing (scRNA-seq), we characterized MSCs isolated from the UC of term and preterm pregnancies at delivery (term and preterm donors), as well as non-progenitor control cell line, human neonatal dermal fibroblasts (HNDFs). Moreover, we associated UC-MSC transcriptomic profiles with their therapeutic potential in hyperoxia-induced lung injury in neonatal rats. Finally, we developed and characterized a novel two-hit (2HIT) BPD model in neonatal mice, assessed UC-MSCs' optimal route of injection, timing, and dose, and evaluated their therapeutic effects in that model.
We showed that UC-MSCs isolated from the majority of term and preterm donors, including preterm donors with pregnancy-related complications, have limited heterogeneity and possessed a transcriptome enriched in genes related to cell cycle and cell proliferation activity (termed "progenitor-like" cells). In contrast, UC-MSCs isolated from one term and two preterm donors with preeclampsia displayed a unique transcriptome comprised of many genes related to fibroblast activity, including extracellular matrix (ECM) organization (termed "fibroblast-like" cells). In addition, treatment with progenitor-like UC-MSCs, but not with fibroblast-like cells nor HNDFs, significantly improved lung structure, function, and pulmonary hypertension (PH) in
hyperoxia-induced lung injury in neonatal rats. We identified marker genes for the therapeutic UC-MSCs (progenitor-like cells) and non-therapeutic cells (fibroblast-like cells and HNDFs). Among them, the high expression of major histocompatibility complex class I (MHCI) is associated with a reduced therapeutic effect.
Furthermore, we developed a novel 2HIT BPD mice model with in-depth characterization of the innate immune response and lung injury. 2HIT injury caused a transient type 1 proinflammatory cytokine response and a significant decrease in type 2 anti-inflammatory cytokine lung expression and number of anti-inflammatory M2 type alveolar macrophages. Moreover, 2HIT mice showed impaired lung compliance and growth. Repeated intravenous (i.v.) injections of UC-MSCs at a dose of 20×10⁶ cells/kg body weight (BW) on postnatal day (PD) one and two improved survival, BW, lung compliance, and growth of 2HIT animals.
In conclusion, scRNA-seq experimentation provided evidence that UC-MSCs isolated
from different donors harbor different transcriptomes with progenitor-like or fibroblast-like characteristics. Only progenitor-like cells provided a therapeutic effect in hyperoxia-induced lung injury in neonatal rats. The development of a novel murine 2HIT BPD model allowed us to characterize the innate immune response and lung pathology and confirm the optimal dose of UCMSCs to provide therapeutic potential in that model. These results will enable better therapeutic selection of UC-MSCs and help improve treatment regimen prior to ultimate clinical translation.
|
Page generated in 0.2851 seconds