• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 68
  • 23
  • 10
  • 10
  • 10
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 241
  • 241
  • 152
  • 71
  • 68
  • 62
  • 57
  • 54
  • 46
  • 39
  • 32
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

An investigation into the potential of mesenchymal stromal cells to attenuate graft-versus-host disease

Melinda Elise Christensen Unknown Date (has links)
Survival of patients with poor prognosis or relapsed haematopoietic malignancies can be markedly improved by allogeneic haematopoietic stem cell transplantation (HSCT). HSCT reconstitutes the immune and haematopoietic systems after myeloablative conditioning and inhibits the recurrence of the malignancy by a graft-versus-leukaemia (GVL) response mediated by donor T cells. However, significant post-transplant complications such as graft-versus-host disease (GVHD) continue to plague the event-free survival of this curative procedure. GVHD is facilitated by donor T cells that recognise histocompatibility antigens on host antigen presenting cells (APC), such as dendritic cells (DC). Current treatment options for GVHD are focused on these T cells. However, these treatments result in an increased incidence of infection, graft rejection and relapse. A novel means of immunosuppression in GVHD is the use of multi-potent, mesenchymal stromal cells (MSC). MSC are non-immunogenic cells that actively suppress T cell function in vitro, and can resolve steroid-refractory GVHD in the clinic. Despite their use in the clinic, there is a paucity of pre-clinical data. Our aim was to investigate the in vivo efficacy of MSC to control GVHD while maintaining the beneficial GVL effect, and to begin to understand the mechanism by which MSC exert their immunosuppressive effects. We isolated and characterised MSC from murine bone/bone marrow and demonstrated that they suppressed T cell proliferation in vitro, even at low ratios of 1 MSC per 100 T cells. This was true of both donor-derived MSC, and MSC derived from unrelated donors (third party). Importantly, we observed that MSC significantly reduced T cell production of the pro-inflammatory cytokines TNFα and IFNγ in culture supernatants and that IFNγ plays a key role in the ability of MSC to suppress T cell proliferation. In vivo, we examined the effects of donor-derived MSC on GVHD severity and onset in two myeloablative murine models of HSCT. A major histocompatibility complex (MHC)-mismatched donor-recipient pair combination was used as a proof–of-principle model [UBI-GFP/BL6 (H-2b)àBALB/c (H-2d)], and an MHC-matched, minor histocompatibility antigen (miHA) mismatched donor-recipient pair combination was used to mimic MHC-matched sibling transplantation [UBI-GFP/BL6 (H-2b)àBALB.B (H-2b)]. We examined a number of variables related to MSC infusion including timing, dose and route of injection. We found that early post transplant infusion of MSC by the intraperitoneal injection was most effective at delaying death from GVHD, compared to pre-transplant infusion or intravenous injection. Furthermore, we found that the dose of MSC was critical, as infusion of too few MSC was ineffective and infusion of too many MSC exacerbated the development of GVHD. Taken together, these results suggest that timing, dose and route of injection are all important factors to be considered to ensure successful therapeutic outcome. To investigate the in vivo mechanism of action, we conducted timed sacrifice experiments in the MHC-mismatched model to determine if MSC altered cytokine secretion and cellular effectors, such as DC, known to play a key role in GVHD. Despite the fact that MSC given post-HSCT enter an environment full of activated DC and IFNγ levels, by day 3 and 6 post infusion, these activated DC and IFNγ levels are decreased compared to controls or mice infused with MSC pre-transplant (p<0.05). This confirmed our in vitro data that IFNγ played an important role in MSC-mediated immunosuppression. In addition, when we removed a major source of IFNγ production in vivo by administering the T cell depleting antibody KT3 to mice with or without MSC, we found that although T cell depletion prolonged survival, MSC were unable to further enhance this effect. This was also true when MSC were used in combination with the conventional immunosuppressant cyclosporine. Finally, we examined whether the infusion of MSC would compromise the GVL effect. We found that whilst MSC could delay the onset of GVHD, in our model they did not alter the anti-tumour effects of the donor T cells. Overall, we have shown that MSC can delay but not prevent death from GVHD when administered at an appropriate time and dose and that IFNγ is required for MSC-mediated immunosuppression in our model. These data suggest that patients undergoing HSCT should be monitored for IFNγ, and administered MSC when high levels are reached. Whilst MSC may be a promising therapy for patients with severe GVHD, we highlight that further investigation is warranted before MSC are accepted for widespread use in the clinic. The risks and benefits for transplant recipients should be carefully considered before utilising MSC to treat or prevent GVHD.
152

Characterization and Modeling of the Remodeling Process that Occurs in Modular Tissue Engineered Constructs Assembled Within Microfluidic Perfusion Chambers

Khan, Omar 31 August 2011 (has links)
Using a modular approach, a vascularized tissue construct is created by embedding functional cells within submillimeter-sized collagen cylinders (modules) while the outside surfaces are seeded with endothelial cells (EC). The void spaces created by randomly packing modules into a container form EC-lined perfusion channels. Upon implantation, the tissues are remodeled by and integrated into the host and experience, to some degree, immune and inflammatory responses. This work utilized microfluidic techniques to study and model the tissue remodeling in vitro in the absence of the host response. When the construct’s tortuous perfusion channels were reproduced in poly(dimethylsiloxane) microfluidic devices and lined with EC, perfusion at higher flow rates reduced EC activation and maintained the desired quiescent EC phenotype. When applying these results to collagen constructs, higher flow rates were not achievable due to the weak mechanical properties of collagen. To increase the collagen’s mechanical strength, a semi-synthetic collagen/poloxamine-methacrylate hydrogel was examined but due to its heterogeneous surface composition, there was inadequate EC attachment and the material was deemed unsuitable for this application. Proceeding with lower flow rates, tissues assembled within microfluidic perfusion chambers from EC-seeded collagen modules showed that over the course of 24 hours, perfusion did not significantly increase activation but instead increased KLF2 expression, a transcription factor involved in the establishment of EC quiescence, and disrupted VE-cadherin bonds between adjacent EC. However, after 1 week of perfusion, the majority of EC were lost. To ameliorate this loss, mesenchymal stromal cells (MSC) were embedded within the modules in order to take advantage of their anti-apoptotic and immunomodulation effects. The MSC temporarily mitigated the loss of the EC but did not prevent it. They did, however, take on a phenotype similar to smooth muscle cells and migrated towards the EC. Perhaps this indicates that the combination of EC, MSC and perfusion drives the creation and assembly of pseudo vessels. Together, the microfluidic techniques used in this study to assemble and perfuse modular tissues revealed new insights into the remodeling process and exposed critical issues surrounding the adaptation of the EC to the combination of perfusion, remodeling and changing flow fields.
153

Characterization and Modeling of the Remodeling Process that Occurs in Modular Tissue Engineered Constructs Assembled Within Microfluidic Perfusion Chambers

Khan, Omar 31 August 2011 (has links)
Using a modular approach, a vascularized tissue construct is created by embedding functional cells within submillimeter-sized collagen cylinders (modules) while the outside surfaces are seeded with endothelial cells (EC). The void spaces created by randomly packing modules into a container form EC-lined perfusion channels. Upon implantation, the tissues are remodeled by and integrated into the host and experience, to some degree, immune and inflammatory responses. This work utilized microfluidic techniques to study and model the tissue remodeling in vitro in the absence of the host response. When the construct’s tortuous perfusion channels were reproduced in poly(dimethylsiloxane) microfluidic devices and lined with EC, perfusion at higher flow rates reduced EC activation and maintained the desired quiescent EC phenotype. When applying these results to collagen constructs, higher flow rates were not achievable due to the weak mechanical properties of collagen. To increase the collagen’s mechanical strength, a semi-synthetic collagen/poloxamine-methacrylate hydrogel was examined but due to its heterogeneous surface composition, there was inadequate EC attachment and the material was deemed unsuitable for this application. Proceeding with lower flow rates, tissues assembled within microfluidic perfusion chambers from EC-seeded collagen modules showed that over the course of 24 hours, perfusion did not significantly increase activation but instead increased KLF2 expression, a transcription factor involved in the establishment of EC quiescence, and disrupted VE-cadherin bonds between adjacent EC. However, after 1 week of perfusion, the majority of EC were lost. To ameliorate this loss, mesenchymal stromal cells (MSC) were embedded within the modules in order to take advantage of their anti-apoptotic and immunomodulation effects. The MSC temporarily mitigated the loss of the EC but did not prevent it. They did, however, take on a phenotype similar to smooth muscle cells and migrated towards the EC. Perhaps this indicates that the combination of EC, MSC and perfusion drives the creation and assembly of pseudo vessels. Together, the microfluidic techniques used in this study to assemble and perfuse modular tissues revealed new insights into the remodeling process and exposed critical issues surrounding the adaptation of the EC to the combination of perfusion, remodeling and changing flow fields.
154

Morphologisch-funktionelle Charakterisierung equiner endometrialer Epithel- und Stromazellen in Monokultur unter Einbeziehung immunzytologischer und transmissionselektronenmikroskopischer Methoden

Böttcher, Denny 01 November 2011 (has links) (PDF)
Ziel der vorliegenden Arbeit war die morphologische und funktionelle Charakterisierung endometrialer Epithel- (EEZ) und Stromazellen (ESZ) des Pferdes bei separater Primärkultur auf permeablen Kunststoffoberflächen mit Hilfe (immun-)zytologischer, zytochemischer und transmissionselektronenmikroskopischer Untersuchungen, ein-schließlich einer vergleichenden Betrachtung der immunhistologischen und histochemischen Eigenschaften der Epithel- und Stromazellen in situ. Mögliche Zusammenhänge zwischen der endometrialen Funktionsmorphologie zum Zeitpunkt der Zellisolierung und den Zelleigenschaften in vitro sollten überprüft werden. Zur Zellgewinnung dienten transzervikal entnommene Endometriumbioptate (n = 14) sowie vollständige Uteri euthanasierter Stuten (n = 6). Parallel entnommene Gewebeproben wurden fixiert und als In-situ-Vergleichsmaterial verwendet. Nach einer mechanischen und enzymatischen Gewebedissoziation erfolgte die Trennung von Epithel- und Stromazellen mittels Filtration, Dichtegradientenzentrifugation sowie Differenzialadhärenz. Ein Teil der aufgereinigten Zellen wurde Formalin-fixiert und für (immun-)zytologische und zytochemische Untersuchungen, insbesondere hinsichtlich des Separationserfolges, aufbereitet. Die Kultivierung der übrigen Zellen beider Zellarten fand separat voneinander auf unbeschichteten Membraneinsätzen (Millicell® PET) in einem Gemisch aus DMEM und Ham’s F-12 unter Zusatz von 10 % fötalem Kälberserum (ESZ bis ca. 60 % Konfluenz) bzw. unter Zusatz von 2,5 % fötalem Kälberserum sowie verschiedener Additive (ESZ ab ca. 60 % Konfluenz sowie EEZ) bei 37 °C in wasserdampfgesättigter, mit 5 % CO2 angereicherter Raumluft statt. Konfluente Kulturen wurden in Formalin bzw. Glutaraldehyd fixiert und für die Lichtmikroskopie respektive Transmissionselektronenmikroskopie aufgearbeitet. Zum Zeitpunkt der Zellisolierung befanden sich die Endometrien überwiegend in der Phase der physiologischen Inaktivität (n = 5) oder der regulären zyklischen sekretorischen (n = 8) bzw. proliferativen (n = 3) Aktivität. In jeweils einer der Gewebeproben war eine irreguläre sekretorische, eine irreguläre proliferative bzw. eine im Übergang zwischen Sekretion und Proliferation anzusiedelnde Funktionsmorphologie festzustellen. In einem weiteren Fall wurden die Zellen aus einem graviden Uterus isoliert. Die Separation von ESZ während des Winteranöstrus verlief mit unzureichendem Erfolg, die Kulturen zeigten eine starke Kontamination mit epithelialen Zellen. Die morphologischen, immunzytologischen und zytochemischen Eigenschaften der beiden separierten Zellpopulationen unmittelbar vor Beginn der Kultivierung ermöglichten keine eindeutige Unterscheidung zwischen Epithel- und Stromazellen. Bei den aus sekretorisch differenzierten Endometrien isolierten ESZ war die Zeitdauer bis zum Erreichen der Konfluenz tendenziell länger als bei Verwendung proliferativ differenzierter Endometrien, während bei den EEZ diesbezüglich keine deutlichen Unterschiede erkennbar waren. Zum Zeitpunkt der Konfluenz konnten anhand der lichtmikroskopischen Morphologie 4 verschiedene EEZ- und 3 verschiedene ESZ-Typen nachgewiesen werden. Ultrastrukturell war eine Unterscheidung der EEZ von den ESZ möglich, innerhalb dieser beiden Zellpopulationen besaßen die lichtmikroskopisch verschiedenen Zelltypen jedoch jeweils vergleichbare Eigenschaften. Ein Zusammenhang zwischen der In-vitro-Morphologie und dem Zyklusstand zum Zeitpunkt der Zellisolierung war nicht zu erkennen. Unabhängig von der lichtmikroskopischen Morphologie wiesen die EEZ in der Regel laterale Zellverbindungen in Form von tight junctions auf, was auf einen polarisierten Phänotyp schließen lässt. Der Nachweis von Proteoglykanen mittels Alzianblau-Färbung verlief in allen kultivierten Zellen mit negativem Ergebnis. Mit Hilfe der PAS-Reaktion waren in der Mehrzahl der EEZ sowie in zahlreichen ESZ in vitro Polysaccharide/Glykoproteine nachweisbar. Die kultivierten EEZ exprimierten stets Zytokeratin 19 und in keinem Falle Desmin; in einem Teil der Zellen konnten die Zytokeratine 8 und 18, Vimentin sowie α-Glattmuskel-Aktin nachgewiesen werden. Demgegenüber enthielten die ESZ keines der untersuchten Zytokeratine, zum Teil trat in diesen Zellen jedoch eine Expression von Vimentin, Desmin und α-Glattmuskel-Aktin auf. Insgesamt war ein eindeutiger Nachweis des zellulären Ursprungs equiner endometrialer Epithel- und Stromazellen in vitro ausschließlich anhand der Zytokeratin-19-Expression möglich. Die Eigenschaften der kultivierten EEZ wichen bei der Zellisolierung aus physiologisch inaktiven Endometrien hinsichtlich der PAS-Reaktion sowie des Nachweises von Zytokeratin 8 und Vimentin von denen der aus den aktiven Endometrien gewonnenen Zellen ab. Darüber hinaus wurden keine deutlichen Einflüsse der endometrialen Funktionsmorphologie zum Zeitpunkt der Zellisolierung auf die zytochemischen und immunzytologischen Charakteristika der kultivierten Zellen offensichtlich. Auf der Grundlage dieser Arbeit können weiterführende Untersuchungen im Zellkulturmodell des equinen Endometriums erfolgen, insbesondere hinsichtlich von Veränderungen der Zelleigenschaften bei Einwirken definierter Milieufaktoren.
155

An investigation into the potential of mesenchymal stromal cells to attenuate graft-versus-host disease

Melinda Elise Christensen Unknown Date (has links)
Survival of patients with poor prognosis or relapsed haematopoietic malignancies can be markedly improved by allogeneic haematopoietic stem cell transplantation (HSCT). HSCT reconstitutes the immune and haematopoietic systems after myeloablative conditioning and inhibits the recurrence of the malignancy by a graft-versus-leukaemia (GVL) response mediated by donor T cells. However, significant post-transplant complications such as graft-versus-host disease (GVHD) continue to plague the event-free survival of this curative procedure. GVHD is facilitated by donor T cells that recognise histocompatibility antigens on host antigen presenting cells (APC), such as dendritic cells (DC). Current treatment options for GVHD are focused on these T cells. However, these treatments result in an increased incidence of infection, graft rejection and relapse. A novel means of immunosuppression in GVHD is the use of multi-potent, mesenchymal stromal cells (MSC). MSC are non-immunogenic cells that actively suppress T cell function in vitro, and can resolve steroid-refractory GVHD in the clinic. Despite their use in the clinic, there is a paucity of pre-clinical data. Our aim was to investigate the in vivo efficacy of MSC to control GVHD while maintaining the beneficial GVL effect, and to begin to understand the mechanism by which MSC exert their immunosuppressive effects. We isolated and characterised MSC from murine bone/bone marrow and demonstrated that they suppressed T cell proliferation in vitro, even at low ratios of 1 MSC per 100 T cells. This was true of both donor-derived MSC, and MSC derived from unrelated donors (third party). Importantly, we observed that MSC significantly reduced T cell production of the pro-inflammatory cytokines TNFα and IFNγ in culture supernatants and that IFNγ plays a key role in the ability of MSC to suppress T cell proliferation. In vivo, we examined the effects of donor-derived MSC on GVHD severity and onset in two myeloablative murine models of HSCT. A major histocompatibility complex (MHC)-mismatched donor-recipient pair combination was used as a proof–of-principle model [UBI-GFP/BL6 (H-2b)àBALB/c (H-2d)], and an MHC-matched, minor histocompatibility antigen (miHA) mismatched donor-recipient pair combination was used to mimic MHC-matched sibling transplantation [UBI-GFP/BL6 (H-2b)àBALB.B (H-2b)]. We examined a number of variables related to MSC infusion including timing, dose and route of injection. We found that early post transplant infusion of MSC by the intraperitoneal injection was most effective at delaying death from GVHD, compared to pre-transplant infusion or intravenous injection. Furthermore, we found that the dose of MSC was critical, as infusion of too few MSC was ineffective and infusion of too many MSC exacerbated the development of GVHD. Taken together, these results suggest that timing, dose and route of injection are all important factors to be considered to ensure successful therapeutic outcome. To investigate the in vivo mechanism of action, we conducted timed sacrifice experiments in the MHC-mismatched model to determine if MSC altered cytokine secretion and cellular effectors, such as DC, known to play a key role in GVHD. Despite the fact that MSC given post-HSCT enter an environment full of activated DC and IFNγ levels, by day 3 and 6 post infusion, these activated DC and IFNγ levels are decreased compared to controls or mice infused with MSC pre-transplant (p<0.05). This confirmed our in vitro data that IFNγ played an important role in MSC-mediated immunosuppression. In addition, when we removed a major source of IFNγ production in vivo by administering the T cell depleting antibody KT3 to mice with or without MSC, we found that although T cell depletion prolonged survival, MSC were unable to further enhance this effect. This was also true when MSC were used in combination with the conventional immunosuppressant cyclosporine. Finally, we examined whether the infusion of MSC would compromise the GVL effect. We found that whilst MSC could delay the onset of GVHD, in our model they did not alter the anti-tumour effects of the donor T cells. Overall, we have shown that MSC can delay but not prevent death from GVHD when administered at an appropriate time and dose and that IFNγ is required for MSC-mediated immunosuppression in our model. These data suggest that patients undergoing HSCT should be monitored for IFNγ, and administered MSC when high levels are reached. Whilst MSC may be a promising therapy for patients with severe GVHD, we highlight that further investigation is warranted before MSC are accepted for widespread use in the clinic. The risks and benefits for transplant recipients should be carefully considered before utilising MSC to treat or prevent GVHD.
156

An investigation into the potential of mesenchymal stromal cells to attenuate graft-versus-host disease

Melinda Elise Christensen Unknown Date (has links)
Survival of patients with poor prognosis or relapsed haematopoietic malignancies can be markedly improved by allogeneic haematopoietic stem cell transplantation (HSCT). HSCT reconstitutes the immune and haematopoietic systems after myeloablative conditioning and inhibits the recurrence of the malignancy by a graft-versus-leukaemia (GVL) response mediated by donor T cells. However, significant post-transplant complications such as graft-versus-host disease (GVHD) continue to plague the event-free survival of this curative procedure. GVHD is facilitated by donor T cells that recognise histocompatibility antigens on host antigen presenting cells (APC), such as dendritic cells (DC). Current treatment options for GVHD are focused on these T cells. However, these treatments result in an increased incidence of infection, graft rejection and relapse. A novel means of immunosuppression in GVHD is the use of multi-potent, mesenchymal stromal cells (MSC). MSC are non-immunogenic cells that actively suppress T cell function in vitro, and can resolve steroid-refractory GVHD in the clinic. Despite their use in the clinic, there is a paucity of pre-clinical data. Our aim was to investigate the in vivo efficacy of MSC to control GVHD while maintaining the beneficial GVL effect, and to begin to understand the mechanism by which MSC exert their immunosuppressive effects. We isolated and characterised MSC from murine bone/bone marrow and demonstrated that they suppressed T cell proliferation in vitro, even at low ratios of 1 MSC per 100 T cells. This was true of both donor-derived MSC, and MSC derived from unrelated donors (third party). Importantly, we observed that MSC significantly reduced T cell production of the pro-inflammatory cytokines TNFα and IFNγ in culture supernatants and that IFNγ plays a key role in the ability of MSC to suppress T cell proliferation. In vivo, we examined the effects of donor-derived MSC on GVHD severity and onset in two myeloablative murine models of HSCT. A major histocompatibility complex (MHC)-mismatched donor-recipient pair combination was used as a proof–of-principle model [UBI-GFP/BL6 (H-2b)àBALB/c (H-2d)], and an MHC-matched, minor histocompatibility antigen (miHA) mismatched donor-recipient pair combination was used to mimic MHC-matched sibling transplantation [UBI-GFP/BL6 (H-2b)àBALB.B (H-2b)]. We examined a number of variables related to MSC infusion including timing, dose and route of injection. We found that early post transplant infusion of MSC by the intraperitoneal injection was most effective at delaying death from GVHD, compared to pre-transplant infusion or intravenous injection. Furthermore, we found that the dose of MSC was critical, as infusion of too few MSC was ineffective and infusion of too many MSC exacerbated the development of GVHD. Taken together, these results suggest that timing, dose and route of injection are all important factors to be considered to ensure successful therapeutic outcome. To investigate the in vivo mechanism of action, we conducted timed sacrifice experiments in the MHC-mismatched model to determine if MSC altered cytokine secretion and cellular effectors, such as DC, known to play a key role in GVHD. Despite the fact that MSC given post-HSCT enter an environment full of activated DC and IFNγ levels, by day 3 and 6 post infusion, these activated DC and IFNγ levels are decreased compared to controls or mice infused with MSC pre-transplant (p<0.05). This confirmed our in vitro data that IFNγ played an important role in MSC-mediated immunosuppression. In addition, when we removed a major source of IFNγ production in vivo by administering the T cell depleting antibody KT3 to mice with or without MSC, we found that although T cell depletion prolonged survival, MSC were unable to further enhance this effect. This was also true when MSC were used in combination with the conventional immunosuppressant cyclosporine. Finally, we examined whether the infusion of MSC would compromise the GVL effect. We found that whilst MSC could delay the onset of GVHD, in our model they did not alter the anti-tumour effects of the donor T cells. Overall, we have shown that MSC can delay but not prevent death from GVHD when administered at an appropriate time and dose and that IFNγ is required for MSC-mediated immunosuppression in our model. These data suggest that patients undergoing HSCT should be monitored for IFNγ, and administered MSC when high levels are reached. Whilst MSC may be a promising therapy for patients with severe GVHD, we highlight that further investigation is warranted before MSC are accepted for widespread use in the clinic. The risks and benefits for transplant recipients should be carefully considered before utilising MSC to treat or prevent GVHD.
157

An investigation into the potential of mesenchymal stromal cells to attenuate graft-versus-host disease

Melinda Elise Christensen Unknown Date (has links)
Survival of patients with poor prognosis or relapsed haematopoietic malignancies can be markedly improved by allogeneic haematopoietic stem cell transplantation (HSCT). HSCT reconstitutes the immune and haematopoietic systems after myeloablative conditioning and inhibits the recurrence of the malignancy by a graft-versus-leukaemia (GVL) response mediated by donor T cells. However, significant post-transplant complications such as graft-versus-host disease (GVHD) continue to plague the event-free survival of this curative procedure. GVHD is facilitated by donor T cells that recognise histocompatibility antigens on host antigen presenting cells (APC), such as dendritic cells (DC). Current treatment options for GVHD are focused on these T cells. However, these treatments result in an increased incidence of infection, graft rejection and relapse. A novel means of immunosuppression in GVHD is the use of multi-potent, mesenchymal stromal cells (MSC). MSC are non-immunogenic cells that actively suppress T cell function in vitro, and can resolve steroid-refractory GVHD in the clinic. Despite their use in the clinic, there is a paucity of pre-clinical data. Our aim was to investigate the in vivo efficacy of MSC to control GVHD while maintaining the beneficial GVL effect, and to begin to understand the mechanism by which MSC exert their immunosuppressive effects. We isolated and characterised MSC from murine bone/bone marrow and demonstrated that they suppressed T cell proliferation in vitro, even at low ratios of 1 MSC per 100 T cells. This was true of both donor-derived MSC, and MSC derived from unrelated donors (third party). Importantly, we observed that MSC significantly reduced T cell production of the pro-inflammatory cytokines TNFα and IFNγ in culture supernatants and that IFNγ plays a key role in the ability of MSC to suppress T cell proliferation. In vivo, we examined the effects of donor-derived MSC on GVHD severity and onset in two myeloablative murine models of HSCT. A major histocompatibility complex (MHC)-mismatched donor-recipient pair combination was used as a proof–of-principle model [UBI-GFP/BL6 (H-2b)àBALB/c (H-2d)], and an MHC-matched, minor histocompatibility antigen (miHA) mismatched donor-recipient pair combination was used to mimic MHC-matched sibling transplantation [UBI-GFP/BL6 (H-2b)àBALB.B (H-2b)]. We examined a number of variables related to MSC infusion including timing, dose and route of injection. We found that early post transplant infusion of MSC by the intraperitoneal injection was most effective at delaying death from GVHD, compared to pre-transplant infusion or intravenous injection. Furthermore, we found that the dose of MSC was critical, as infusion of too few MSC was ineffective and infusion of too many MSC exacerbated the development of GVHD. Taken together, these results suggest that timing, dose and route of injection are all important factors to be considered to ensure successful therapeutic outcome. To investigate the in vivo mechanism of action, we conducted timed sacrifice experiments in the MHC-mismatched model to determine if MSC altered cytokine secretion and cellular effectors, such as DC, known to play a key role in GVHD. Despite the fact that MSC given post-HSCT enter an environment full of activated DC and IFNγ levels, by day 3 and 6 post infusion, these activated DC and IFNγ levels are decreased compared to controls or mice infused with MSC pre-transplant (p<0.05). This confirmed our in vitro data that IFNγ played an important role in MSC-mediated immunosuppression. In addition, when we removed a major source of IFNγ production in vivo by administering the T cell depleting antibody KT3 to mice with or without MSC, we found that although T cell depletion prolonged survival, MSC were unable to further enhance this effect. This was also true when MSC were used in combination with the conventional immunosuppressant cyclosporine. Finally, we examined whether the infusion of MSC would compromise the GVL effect. We found that whilst MSC could delay the onset of GVHD, in our model they did not alter the anti-tumour effects of the donor T cells. Overall, we have shown that MSC can delay but not prevent death from GVHD when administered at an appropriate time and dose and that IFNγ is required for MSC-mediated immunosuppression in our model. These data suggest that patients undergoing HSCT should be monitored for IFNγ, and administered MSC when high levels are reached. Whilst MSC may be a promising therapy for patients with severe GVHD, we highlight that further investigation is warranted before MSC are accepted for widespread use in the clinic. The risks and benefits for transplant recipients should be carefully considered before utilising MSC to treat or prevent GVHD.
158

Comment deux lignées cellulaires stromales mésenchymateuses humaines récapitulent in vitro le microenvironnement hématopoïétique ? : Intérêt en ingénierie / No title available

Ishac, Nicole 01 July 2015 (has links)
L’hématopoïèse se déroule dans un microenvironnement spécialisé appelé niche où les cellules souches hématopoïétiques (CSH) sont en contact étroit avec les cellules stromales mésenchymateuses. Cette interaction cellulaire associée à d’autres facteurs environnementaux, comme la présence des espèces réactives à l’oxygène, est cruciale pour la régulation des CSH normales, mais aussi leucémiques. Pour étudier ce microenvironnement, il est donc important de développer un modèle in vitro de niche humaine qui mime la physiologie in vivo. Nous avons choisi comme modèle deux lignées mésenchymateuses stromales humaines HS-27a et HS-5, très peu décrites dans la littérature. Le premier objectif a été de déterminer la qualité de cette niche tant du point de vue cellulaire, moléculaire que fonctionnel. Nos résultats montrent clairement que les cellules HS-27a participent à la formation d’une niche « quiescente » alors que les cellules HS-5 représentent une niche « proliférative ». Le deuxième objectif a été de créer une niche contrôlée pour le métabolisme oxydatif en régulant l’expression d’une protéine antioxydante, la glutathion peroxydase 3 ou GPx3. L’originalité de ce travail repose sur l’utilisation d’une méthode non virale de transfert de gène par le transposon piggyBac. Le plasmide porteur du gène d'intérêt a été apporté sous forme d’ADN et une source de transposase, enzyme catalysant la réaction d'intégration sous forme d’ARNm. Notre travail montre que GPx3 est un régulateur clé de l’homéostasie hématopoïétique favorisant le maintien des progéniteurs immatures. Pour la première fois, nous créons par ingénierie in vitro une niche hématopoïétique « calibrée » capable de mimer le microenvironnement normal et leucémique. Ce modèle permet non seulement d’identifier les acteurs clés de la régulation des cellules médullaires, mais aussi de développer des stratégies thérapeutiques ciblées. / Hematopoiesis occurs in a hypoxic microenvironment or niche in which hematopoietic stem cells (HSCs) are in close contact with mesenchymal stromal cells. Cellular interactions as well as microenvironmental factors such as reactive oxygen species are crucial for the maintenance of normal and leukemic HSCs. Developing an in vitro human culture system that closely mimcs marrow physiology is therefore essential to study the niche. Here, we present a model using two human stromal cell lines, HS-27a and HS-5. Previously poorly described in the literature, we have further characterized both of these cell lines. The first objective was to assess the quality of HS-27a and HS-5 niches by investigating their cellular, molecular and functional characteristics. Our results clearly show that HS-27a cells display features of a “quiescent” niche whereas HS-5 cells rather represent a “proliferative” niche. The second objective was to engineer a hematopoietic niche where the oxidative metabolism is optimized for the expression of an antioxidant protein, glutathione peroxidase 3 (GPx3). The originality of this work is the use of a non-viral gene transfer system by using the transposon piggyBac. This strategy was achieved by delivering a DNA plasmid carrying the gene of interest, and an mRNA source of transposase, the enzyme which catalyzes the transgene integration. Functionally, GPx3 was shown to be a key regulator for sustaining hematopoietic homeostasis by maintaining immature progenitor cells. For the first time, an original non-viral gene transfer has been used to create an in vitro hematopoietic niche that recapitulates the complexity of normal and leukemic microenvironment. This niche not only provides a platform to identify regulatory factors controlling medullary cells, but may also help in the development of targeted therapeutic strategies.
159

Estudo sobre condições do cultivo de células-tronco mesenquimais para aplicações clínicas

Valim, Vanessa de Souza January 2012 (has links)
Introdução: Células-troco mesenquimais (CTM) vêm mostrando seus benefícios na doença do enxerto-versus-hospedeiro (DECH), observada no transplante de células tronco hematopoéticas (TCTH), existem três questões em aberto: (1) Expansão de CTM em meio de cultura suplementado com soro fetal bovino (SFB), pelo o risco de xenorreação; (2) Otimização de condições de cultura para a obtenção, em tempo hábil, de um numero que permita de 4 a 6 infusões de 2x106cells/kg do receptor; (3) Obter células do doador de medula óssea, evitando assim a utilização de um terceiro doador. Objetivos: Este estudo foi desenhado para comparar o lisado de plaquetas (LP) e o SFB na expansão de CTM, a densidade de plaqueamento das células e os dias entre cada passagem, e para investigar se as células nucleadas totais obtidas da bolsa e filtro do TCTH, podem ser utilizadas para expansão de CTM para utilização clínica. Métodos: Células residuais foram removidas do filtro e da bolsa utilizados para o TCTH, plaqueadas e depois da primeira passagem foram cultivadas em diferentes concentrações com SFB ou LP e observado o número de dias que levaram para chegar a 80% de confluência. Em seguida, as culturas com as mesmas densidades de plaqueamento foram suplementadas com LP ou SFB e depois de sete dias contou-se o número de células para analisar o quanto elas cresceram nesse período. Resultados: A proliferação de CTM, na presença de LP e SFB foi em média 11,88 e 2,5 vezes, respectivamente, num período de 7 dias. A concentração mais elevada de células usando LP demorou menos tempo para atingir a confluência, em comparação com os três inferiores. Este estudo sugere que o LP é a melhor escolha como suplemento para expandir CTM, e permite a proliferação de um número suficiente de CTM de doadores para uso clínico. / Introduction: Mesenchymal stromal cells (MSC) have shown their benefits in graft-versus-host disease (GVHD), with three unsettled matters:(1) MSCs expansion in medium with Fetal Calf Serum (FCS) and its risk of xenoreaction; (2) The number of cells indicated for therapy is 2x106cells/Kg with the need to optimize expansion, number and time wise; and (3) the utilization of third party donors. Aims: This study was designed to compare the platelet lysate (LP) and FCS on the expansion of MSC, the optimal cell plating density and days between each pass, and to investigate if donor total nucleated cells (TNC) obtained from the washouts of hematopoietic stem cell transplantation (HSCT) explants can be expanded to be used at clinical grade. Methods: TNC were removed, plated and after the first passage were cultivated in different concentrations with FCS or PL and the number of days reach 80% of confluence was observed. Next, cultures with the same plating density were fed either with PL or FCS and after seven days counted to analyze how much they have grown in that period. Results: The proliferation of mesenchymal stromal cells in the presence of PL and SFB was averaged 11.88 and 2.5 times, respectively, in a period of 7 days. The highest concentration of plating cells using PL, took less time to reach confluence as compared with the three lower ones. This study suggests that the PL is the best choice as a supplement to expand MSC, and allows the proliferation of a sufficient number of donors MSC at P2 for clinical use.
160

Avaliação do potencial imunomodulador de células-tronco mesenquimais isoladas a partir de polpa dental, tecido adiposo e medula óssea

Rodrigues, Felipe Valle Fortes January 2015 (has links)
Introdução: Células tronco mesenquimais (CTM) são uma população residente nos tecidos adultos de origem mesodérmica, com funções regenerativas de manutenção da integridade tecidual, com destaque no desempenho imunomodulador. Esse aspecto levou as CTM a tornarem-se ferramentas terapêuticas valiosas da pesquisa à assistência ao paciente em doenças autoimunes e de cunho inflamatório. Além disso, CTM podem ser isoladas de materiais tidos como descarte de procedimentos, como dentes decíduos, filtros de transplante de medula óssea e gordura. Nesse panorama, torna-se necessário estabelecer o efeito que a origem tecidual tem na eficiência imunoreguladora e na possível aplicabilidade clínica destas células. Objetivo: Comparar o potencial imunomodulador de células mesenquimais isoladas a partir de filtros descartados após a infusão de medula óssea, de lipoaspirado e de polpa de dentes decíduos. Métodos: Foi realizada a comparação da capacidade proliferativa de CTMs, cultivadas na presença de lisado plaquetário, das diversas fontes através do cálculo de population doubling das CTM em co-cultura com linfócitos T isolados em coluna magnética e com células mononucleares de sangue periférico, estimuladas com fitohemaglutinina; e determinado por citometria de fluxo o efeito das CTM das diversas fontes sobre as subpopulações linfocitárias. Resultados: CTM das três fontes foram capazes de inibir a proliferação de linfócitos e CTM de tecido adiposo foram mais eficientes em induzir o fenótipo de células T reguladoras e na diminuição de células T citotóxicas. Conclusão: comparadas à CTM isoladas de medula óssea e de polpa dentária, as CTM originadas de tecido adiposo exibem efeito imunomodulador mais acentuado. / Background: Mesenchymla stromal cells (MSC) reside in most adult tissue of mesenchymal origen, with a broad functions envolving cell repopulation and maintenence of tissue homeostasis, trough immunemmodulatory action. MSC are valuable terapêutic instruments applied from research to autoimune and inflamatory diseases. MSC can be isolated from diverse discarted biological matherials, like lipoaspirate, exfoliated deciduous teeeth and boné marrow ransplant filters. There so it´s necessary to stablish how source can impact MSC efficiency and possible clinical aplications. Objective: Compare immunomodulatory potential of adipose MSC and dental pulp MSC to boné marrow MSC. Methods: MSC from three selected sources were cocultured with phytohemaglutinin stimulated and magnetically isolated T cells and peripheral blood mononuclear cells; immunephenotype of cocultivated lymphocytes were also conducted. Results: MSC from all analyzed sources were capable to inhibit lymphocyte proliferation. Adipose MSC were capable to induce Treg phenotype and decrease T CD8+ limphocytes. Conclusion: Cell culture and therapy with MSC present many paradigms and we address to some of those to elucidate the possible most efficient source.

Page generated in 0.0708 seconds