• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 31
  • 30
  • 18
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

p-block hydrogen storage materials

Smith, Christopher January 2010 (has links)
The development of a clean hydrogen economy will aid a smooth transition from fossil fuels which is required to stem the environmental impact and economic instability caused by oil dependency. For vehicular application, in addition to being cheap and safe, a commercial hydrogen store must contain a certain weight percentage of hydrogen to provide a reasonable range (~300 miles). It must also be able to release hydrogen under near-ambient conditions (80-120°C) and have a reasonable cycling capacity (~1000 cycles). The primary motivation of this thesis is to gain a fundamental understanding into the sorption processes of hydrogen on carbon- and aluminium-based materials to improve their hydrogen storage capacity. The sorption processes of hydrogen on mechanically milled graphite have been investigated, primarily using Electron Spin Resonance Spectroscopy and Inelastic Neutron Scattering. An investigation into the storage properties of tetrahydroaluminates, primarily NaAlH<sub>4</sub> and LiAlH<sub>4</sub>, is performed in the presence and absence of a catalyst, and a new phase of NaAlH<sub>4</sub> is observed prior to its decomposition. Variable temperature neutron and synchrotron diffraction, in conjunction with gravimetric and mass spectroscopy data were obtained for several mixtures of tetrahydroaluminates and alkali amides and the hydrogen desorption processes are shown to be quite different from the constituent materials. The structure of Ca(AlH<sub>4</sub>)<sub>2</sub> has been experimentally determined for the first time and a complete set of equations describing its decomposition pathway is given.
32

ENGINEERING GENETICALLY ENCODED FLUORESCENT BIOSENSORS TO STUDY THE ROLE OF MITOCHONDRIAL DYSFUNCTION AND INFLAMMATION IN PARKINSON’S DISEASE

Stevie Norcross (6395171) 10 June 2019 (has links)
<p>Parkinson’s disease is a neurodegenerative disorder characterized by a loss of dopaminergic neurons, where mitochondrial dysfunction and neuroinflammation are implicated in this process. However, the exact mechanisms of mitochondrial dysfunction, oxidative stress and neuroinflammation leading to the onset and development of Parkinson’s disease are not well understood. There is a lack of tools necessary to dissect these mechanisms, therefore we engineered genetically encoded fluorescent biosensors to monitor redox status and an inflammatory signal peptide with high spatiotemporal resolution. To measure intracellular redox dynamics, we developed red-shifted redox sensors and demonstrated their application in dual compartment imaging to study cross compartmental redox dynamics in live cells. To monitor extracellular inflammatory events, we developed a family of spectrally diverse genetically encoded fluorescent biosensors for the inflammatory mediator peptide, bradykinin. At the organismal level, we characterized the locomotor effects of mitochondrial toxicant-induced dopaminergic disruption in a zebrafish animal model and evaluated a behavioral assay as a method to screen for dopaminergic dysfunction. Pairing our intracellular redox sensors and our extracellular bradykinin sensors in a Parkinson’s disease animal model, such as a zebrafish toxicant-induced model will prove useful for dissecting the role of mitochondrial dysfunction and inflammation in Parkinson’s disease. </p>
33

The application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to forensic glass analysis and questioned document examination

Denman, John A January 2007 (has links)
The combination of analytical sensitivity and selectivity provided by time-of-flight secondary ion mass spectrometry (ToF-SIMS), with advanced statistical interrogation by principal component analysis (PCA), has allowed a significant advancement in the forensic discrimination of pen, pencil and glass materials based on trace characterisation.
34

Structure-Function Control in Organic Co-Crystals/Salts Via Studies on Polymorphism, Phase Transitions and Stoichiometric Variants

Kaur, Ramanpreet January 2015 (has links) (PDF)
The thesis entitled “Structure-function control in organic co-crystals/salts via studies on polymorphism, phase transitions and stoichiometric variants” consists of five chapters. The main emphasis of the thesis is on two aspects, one to characterize co-crystal polymorphism in terms of propensity of intermolecular interactions to form co-crystals/salts or eutectics. The other aspect is to explore the feasibility of using such co-crystals/salts to exhibit properties like proton conduction, dielectric and ferroelectric behaviour. Gallic acid and its analogues possess functionalities to provide extensive hydrogen bonding capabilities and are chosen as the main component while the coformers are carefully selected such that they either accept or reject the hydrogen bonding offered. Such co-crystallization experiments therefore provide an opportunity to unravel the intricate details of the formation of crystalline polymorphs and/or eutectics at the molecular level. Further these co-crystal systems have been exploited to evaluate proton conductivity, dielectric and ferroelectric features since the focus is also on the design aspect of functional materials. In the context of identifying and utilizing Crystal Engineering tools, the discussions in the following chapters address not only the structural details but identify the required patterns and motifs to enable the design of multi-component co-crystals/salts and eutectics. In particular, the presence/absence of lattice water in gallic acid has been evaluated in terms of importing the required physical property to the system. Chapter 1 discusses the structural features of tetramorphic anhydrous co-crystals (1:1; which are synthon polymorphs) generated from a methanolic solution of gallic acid monohydrate and acetamide, all of which convert to a stable form on complete drying. The pathway to the stable form (1:3 co-crystal) is explained based on the variability in the hydrogen bonding patterns followed by lattice energy calculations. Chapter 2A studies the presence/absence and geometric disposition of hydroxyl functionality on hydroxybenzoic acids to drive the formation of co-crystal/eutectic in imide-carboxylic acid combinations. In Chapter 2B the crystal form diversity of gallic acid-succinimide co-crystals are evaluated with major implications towards the design and control of targeted multi-component crystal forms. The co-crystal obtained in this study shows a rare phenomenon of concomitant solvation besides concomitant polymorphism and thus making it difficult to obtain a phase-pure crystal form in bulk quantity. This issue has been resolved and formation of desired target solid form is demonstrated. Thus, this study addresses the nemesis issues of co-crystallization with implications in comprehending the kinetics and thermodynamics of the phenomenon in the goal of making desired materials. Chapter 3 focuses on the systematic co-crystallization of hydroxybenzoic acids with hexamine using liquid assisted grinding (LAG) which show facile solid state interconversion among different stoichiometric variants. The reversible interconversion brought about by varying both the acid and base components in tandem is shown to be a consequence of hydrogen bonded synthon modularity present in the crystal structures analyzed in this context. In Chapter 4A, the rationale for the proton conduction in hydrated/anhydrous salt/co-crystal of gallic acid - isoniazid is provided in terms of the structural characteristics and the conduction pathway is identified to follow Grotthuss like mechanism which is supplemented by theoretical calculations. Chapter 4B describes an extensive examination of the hydrated salt of gallic acid-isoniazid which unravels the irreversible nature of the dielectric property upon dehydration and suggests that the “ferroelectric like” behaviour is indeed not authenticated. This chapter brings out the significance role of lattice water in controlling the resulting physical property (dielectric/ferroelectric in this case). Chapter 5 describes the structural features of two hydrated quaternary salts of hydroxybenzoic acids-isoniazid-sulfuric acid and the phase transitions at both low and high temperatures are shown to be reversible. Single Crystal to Single Crystal (SCSC) in situ measurement corroborated by thermal and in situ Powder X-ray Diffraction studies proves the claim. Further, the properties exhibited by these materials are also governed by lattice water content.
35

Addressing Subtle Physicochemical Features Exhibited by Molecular Crystals Via Experimental and Theoretical Charge Density Analysis

Pal, Rumpa January 2015 (has links) (PDF)
The thesis entitled “Addressing subtle physicochemical features exhibited by molecular crystals via Experimental and Theoretical Charge Density Analysis” consists of five chapters. An introductory note provides a brief description of experimental and theoretical charge density methodology, followed by its utilization in obtaining certain physical and chemical properties in molecular crystals. Chapter 1 addresses not so easily accessed molecular property arising due to electron conjugation, highlighting antiaromaticity in tetracyclones. A systematic study of six tetracyclone derivatives with electron withdrawing and electron donating substituents has been carried out using experimental and theoretical charge density analysis. A three pronged approach based on quantum theory of atoms in molecules (QTAIM), nucleus independent chemical shifts (NICS), and source function (SF) has been employed to establish the degree of antiaromaticity of the central five-membered ring in all the derivatives. Electrostatic potentials mapped on the is density surface reveal the finer effects of different electron withdrawing and electron donating substituents on the carbonyl group. Chapter 2 presents a temperature induced reversible first order single crystal to single crystal phase transition (Room temperature Orthorhombic, P22121 to low temperature Monoclinic, P21) in a  hybrid peptide, Boc-γ4(R)Val-Val-OH. The thermal behavior accompanying the phase transition of the dipeptide crystal was characterized by differential scanning calorimetry, visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. The reversible nature of the phase transition is traced to be due to an interplay between enthalpy and entropy. Chapter 3 brings out an unusual stabilizing interaction involving a cooperative -hole and ¬hole character in a short NCS···NCS bond. This chapter describes structural features of four isothiocyanate derivatives, FmocXCH2NCS; X=Leu, Ile, Val and Ala. Among these it is observed that only FmocLeuCH2NCS which crystallizes in a tetragonal space group, P41, (a=b=12.4405(5) Å; c= 13.4141(8) Å) transforms isomorphously to a low temperature form, P41, (a=b=17.4665(1) Å; c= 13.1291(1) Å). The characteristics of the phase transition have been monitored by Differential Scanning Calorimetry, variable temperature IR and temperature dependent unit cell measurements. The short NCS···NCS intermolecular interaction (3.296(1) Å) is analyzed based on detailed experimental charge density analysis which reveals the nature of this stabilizing interaction. Chapter 4 explains a comparative study of syn and anti conformations of carboxylic acids in peptides from both structural aspect and charge density features. Single crystal structures of four peptides having syn conformations [BocLeuγ4(R)Valγ4(R)ValOH, BocLeuγ4(R)ValLeuγ4(R)ValOH, Boc3(S)Leu3(S)LeuOH] and one with anti conformation, BocLeuγ4(R)ValValOH have been analyzed. Experimental charge density analysis has been carried out exclusively on BocLeuγ4(R)ValValOH having anti form, because of its rare occurrence in literature. However, low temperature datasets on the four peptides with syn conformations were collected and theoretical charge density analysis has been carried out on two of these compounds. Electrostatic potentials mapped on is density surface bring out a significant difference at the oxygen atoms of the carboxyl group in the two conformations. However, lone pair orientation of different types of Oxygen atoms in the two forms (urethane, amide, acid) doesn’t exclusively indicate the differences in the corresponding charge density features. Chapter 5 addresses the issue of how sensitive are the charge density features associated with amino acid residues when the backbone conformational angles are varied. Three model systems, 1, L-alanyl–L-alanyl–L-alanine dehydrate; 2, anhydrous L-alanyl–L-alanyl–L¬alanine and 3, cyclo-(D,L-Pro)2(L-Ala)4 monohydrate have been chosen for this evaluation. Compound 1 has ant parallel alignment of tripe tide strands, and compound 2 has parallel alignment. All the alanine residues in compound 1 and 2 are in the -sheet region of the Ramachandran plot, whereas, the four Alanine residues in the cyclic hex peptide 3 span different regions of the Ramachandran plot. Theoretical multipole modelling has been carried out in order to explore the plausibility of transferring multipole parameters across different regions of Ramachandran Plot. Appendix I contains a brief description of charge shift bonding in Ph-CH2-Se-Se-CH2-Ph, as determined based on both experimental and theoretical charge density analysis. Appendix II contains a reprint of a published article on “Conformation-Changing Aggregation in Hydroxyacetone: A Combined Low-Temperature FTIR, Jet, and Crystallographic Study”.
36

Maleimide Based Materials for Organic Light-Emitting Diodes (OLEDs)

Sharma, Nidhi January 2015 (has links)
Maleimide based highly luminescent material Cbz-MI with donor acceptor donor (D-A-D) backbone has been synthesized and characterized. An organic light emitting diode fabricated using this material as emitting layer exhibited EQE of 2.5% in the yellow region of visible spectrum. Due to the small energy gap of materials emitting in this region of spectrum, EQE of OLED is usually limited by various non-radiative decays and high EQE of OLED using this material proves that most of the nonradiative decay pathways have been avoided by the careful design of molecule and device structure. Although Cbz-MI did not show TADF properties, but if tailored with right electron donor along with maleimide as an acceptor, such derivatives may exhibit TADF properties
37

Local Structure-Property Relationship in Some Selected Solid State Materials

Mukherjee, Soham January 2015 (has links) (PDF)
The thesis entitled “Local structure-property relationship in some selected Solid State Materials” mainly focuses on two fundamental topics: (a) evaluation of some standard global structural concepts in terms of local structure to provide a unique description of the crystal structure, and (b) the role of the crystal structure at different length-scales in controlling the properties in some selected materials.
38

Studies on Correlation between Microstructures and Electronic Properties of Organic Semiconductors

Mukhopadhyay, Tushita January 2017 (has links) (PDF)
The work carried out in this thesis systematically investigates the correlation between microstructures and electronic properties of organic semiconductors. The major directions that were pursued in this thesis are: (i) studies on structure-property relationship by rational design and synthesis of monodisperse oligomers with varying chain-lengths (ii) role of electronic properties and aggregation (microstructures) in governing singlet fission (SF). In the first part of the thesis, the optical, structural and charge transport properties of Diketopyrrolopyrrole (DPP)-based oligomers, as a function of the chain length, has been discussed. The energy bands became wider with an increase in chain length and a gain in backbone electron affinity was observed, with an offset in microstructural order. With an increase in chain length, the tendency to form intramolecular aggregates increased as compared to intermolecular aggregates due to the onset of backbone conformational defects and chain folding. An insight into the solid-state packing and microstructural order has been obtained by steady-state and transient spectroscopy, grazing incidence small angle x-ray scattering (GISAXS), atomic force microscopy (AFM) and transmission electron microscopy (TEM) studies. The charge-carrier mobilities varied in accordance with the degree of microstructural order as: dimer > trimer > pentamer. A library of DPP-DPP based trimers was also generated by modifying the donor chromophore (phenyl, thiophene and selenophene) in the oligomer backbone. Highest n-channel mobility of ~0.2 cm2V-1s-1 was obtained which validated that: (a) the effect of solid-state packing predominates the effect of backbone electronic structure on charge carrier mobility. Although oligomers possess lesser backbone defects than polymers in general, their charge carrier mobilities were not comparable to that of 2DPP-OD-TEG polymer, which forms highly oriented and isotropic edge-on crystallites/microstructures in the thin film, shows high n-channel mobility of 3 cm2V-1s-1 and band-like transport ;(b) although delocalized electronic states are achieved at greater chain lengths, the degree of solid-state microstructural order drastically reduces which leads to lower charge carrier mobilities; (c) conformational collapse resulted in lower electron mobilities and an increase in ambipolarity. The later part of the thesis debates on the relative contribution of electronic structure and aggregation (microstructures) in governing singlet fission (SF). Motivated by the recent SF model in carotenoid aggregates, a DPP-DPP based oligomer was synthesized by incorporating a vinylene bridge to imbue “polyene” character in the chromophore. Transient Spectroscopy (TA) measurements were carried out to monitor the formation of triplet states in the oligomer and to probe the occurrence of singlet fission. Although the oligomer exhibits “polyene” character like a typical “carotenoid aggregate”, it did not show singlet fission because of the additional stabilization of the singlet (S1) state which reduces the ∆EST. This study rationalized the importance of judicious control of band structures as well as microstructures to observe the SF phenomenon in this category of chromophores. The novel synthetic protocol provides the scope to tailor DPP-DPP based materials with desired effective conjugation lengths and side chains and can foreshow great prospects for future generation of organic electronics.
39

Pushing the Limits of NMR Sensitivity and Chiral Analysis : Design of New NMR Methods and Bio-Molecular Tools

Lokesh, N January 2015 (has links) (PDF)
The thesis entitled "Pushing the Limits of NMR Sensitivity and Chiral Analysis: Design of New NMR Methods and Bio-molecular Tools" consists of six chapters. The research work reported in this thesis is focused on the development of novel chemical and NMR methodological approaches for enantiomeric analysis and mea- surement of residual dipolar couplings (RDCs), and the development of sensitivity enhanced slice selective NMR experiments for obtaining pure shift 1H spectra and the measurement of scalar couplings. The thesis is divided into two parts. The Part I comprises chapters 2-4, where the enantiomeric analysis is discussed, which includes newly developed chiral reagents, two new weak chiral aligning media and design of novel NMR techniques. Part II comprises chapters 5 and 6, which discusses new sensitivity enhanced slice selective NMR techniques. Chapter 1 gives a general introduction to NMR and the problems investigated in the remaining chapters of the thesis. The chapter starts with a brief discussion on the introduction, advancements and general applications of NMR, discussion is also given on the NMR approaches for enantiomeric analysis both in isotropic and anisotropic phases and the measurement of RDCs, including the benefits and limitations associated with each approach. The chapter sets the tone by discussing limitations of the existed NMR enantiomeric approaches and slice-selective techniques, and builds the bridge for the rest of the chapters by addressing these limitations. The chapter also introduces slice selective experiments, their benefits over other conventional methods and limitations. Additional introductory notes are also given on some related concepts. Part I : NMR Chiral analysis and RDCs measurements Chapter 2 discusses chiral sensing properties of RNA nucleosides and their utility as chiral derivatizing agents for the enantio-discrimination of 1o-amines using one dimensional 1H NMR. A three component protocol has been proposed for the complexation of nucleosides with amines, which is rapid, economical and provides maximum diastereomeric conversion. The chiral differentiating ability of nucleosides are examined for different amines based on the 1H NMR chemical shift differences between the diastereomers (∆δ R, S ). Enantiomeric differentiation has been observed at multiple chemically distinct proton sites. It is observed that adenosine and guanosine exhibit large chiral differentiation (∆δ R, S ) due to the presence of a purine ring. The comparison of the diastereomeric excess (de) measured by NMR with those of the gravimetrically prepared ratios are in excellent agreement with each other confirming the robustness of these RNA nucleosides in discriminating primary amines. Chapter 3 establishes the smooth connectivity with the chapter 2 by discussing the limitations of the enantiomeric discrimination using NMR in isotropic solutions. This chapter discusses two new water compatible aligning media that were developed based on self-assembling strategy of small bio-molecules. The self-assembled folic acid, and the binary mixture of 50-GMP and guanosine are introduced as two novel weak aligning media. The properties of these low ordered media have been systematically studied for their easy preparation, physical parameter dependent tunability of their degree of alignment, mesosphere sustainability over a broad range of temperature and the concentration of the ingredients, and the phase reproducibility. The applications of both these new media are demonstrated for chiral and pro-chiral discrimination and also for the measurement of RDCs. Both these liquid crystalline media could be tuned to very low degree of alignment (order parameter of the order of 10−4), which provides simple first order spectra of molecules aligned in them, the analysis provide order dependent NMR spectral parameters. The 50-GMP:guanosine orienting medium can be prepared in less than 1 hour, and has been demonstrated to be an ideal medium for the determination of RDCs that are used as restraints in the structure calculations of small molecules. Chapter 4 describes 1H NMR spectral complexity in isotropic and anisotropic phases and its consequences on enantiomeric analysis. In circumventing such problems, new NMR techniques have been developed and the spin dynamics involved in the designed sequences are discussed. The newly developed 2D 1H NMR experimental method termed as RES-TOCSY, and its applicability for resolving R and S enantiomeric or diastereomeric peaks of all the coupled proton spins in isotropic phase is discussed. The utility of the developed method is demonstrated in diverse situations, such as, for suppressing impurities peaks, resolving the severely overlapped peaks and unraveling the peaks masked due to severe line broadening when metal complexes are used as chiral auxiliaries. The advantages and limitations of the method over other methods available in the literature are discussed and the significant advantage of the present method is illustrated by spectral comparison with J-resolved experiment. The appli- cation of the method for the accurate measurement of enantiomeric excess has also been demonstrated. The chapter also introduces another NMR experimental technique developed for resolving enantiomeric peaks and complete unraveling of R and S spectra in anisotropic phase. The developed 2D NMR method is cited in the literature as CH-RES-TOCSY. In addition to spectroscopic visualization of R and S spectra, the method also yields C-H RDCs. The applicability of the new experiment has been demonstrated on a chosen example. The wide utility of the method has also been demonstrated for the assignment of symmetric cis- and trans- isomers. Part II : Sensitivity Enhancement of Slice selective NMR Experiments Chapter 5 describes applications of slice selective NMR experiments over conven tional NMR methods and their limitations as far as the sensitivity of signal detection is concerned, especially in low concentrated samples. The chapter introduces the implementation of Acceleration by Sharing Adjacent Polarization (ASAP) technique in slice selective experiments. It is convincingly demonstrated that ASAP helps in reducing inter scan relaxation delay and consequently permits acquisition of more number of scans in a given time, resulting in the gain in signal enhancement by a factor of two. The pulse sequences have been suitably designed for obtaining the pure shift 1H spectra and in G-SERF experiment for the measurement of 1H-1H couplings, both with significantly enhanced signal intensities. Chapter 6 describes new sensitivity enhanced slice selective NMR methods for mea- surement of scalar couplings. A new experiment has been developed which is named as Quick G-SERF (QG-SERF). It is a 1D NMR slice selective method developed based on real time spin manipulation technique. The method gives multiple scalar couplings of a selected spin with simplified multiplets, which is analogous to the 2D G-SERF but with considerable saving in instrument time by 1-2 orders of magnitude. The rapidness of the experiment arises due to reduced dimensionality. The spin dynamics involved in the pulse sequence and its working principle have been described. The application of the method is illustrated for the measurement of 1H-1H couplings. The sequence has been further improved to obtain the heteronuclear couplings between two abundant spins in an orchestrated manner and has been demonstrated for measurement of 1H-19F couplings. This sequence cited as HF-QG-SERF has been implemented on the molecules containing number of chemically non-equivalent fluorine atoms.
40

Third Generation Crystal Engineering : Supramolecular Synthons, IR Spectroscopy and Property Design

Saha, Subhankar January 2017 (has links) (PDF)
Crystal engineering is defined as “the understanding of intermolecular interactions in the context of crystal packing and in the utilisation of such understanding in the design of new solids with desired physical and chemical properties”. If crystals are the supramolecular equivalents of molecules, then crystal engineering is the supramolecular equivalent of organic synthesis. The subject considers both crystal structure analysis and design of new structures with targeted properties. The concept of “Supramolecular Synthons” was introduced by G. R. Desiraju in this context, for the rational design of structures. Supramolecular synthons are the smallest reducible structural units that contain geometrical and chemical information required for recognition between functional groups in molecular solids. Crystal engineering has grown very fast after the introduction of this idea in 1995 and engineered solids were found to be useful for application in many diverse fields, from structural chemistry to drug design. Because of the great significance of supramolecular synthons, their identification and analysis in terms of crystallographic, spectroscopic, and computational methods is essential. Single crystal X-ray diffraction (SCXRD) is a widely used technique for the identification of synthon structure. But the technique has its own limitations like requirement of good quality, suitably sized single crystals, longer times associated with the process which further restricts high throughput analysis. Practically, there is no other way for identification of synthons on a regular basis. In this situation a simple, accurate, and fast method will be of significance; not only for basic studies, but also to scan different solid state phases in pharmaceutical industries. Due to this reason, I have studied IR spectroscopy to find marker bands for different synthons in the first part of the thesis. In chapter 2, I have analyzed a variety of C–H···X based weak synthons. For identification of each synthon, two sets of compounds were taken. In one set the synthon exists and in the other set it does not. Comparison and verification of IR characteristics helps to establish marker bands. Such markers are used to get information on synthon patterns in compounds with unknown crystal structures. The next challenge is whether or not such an IR method can distinguish different geometries of a same interaction. To address this question, different geometries of NO2···I halogen bonded synthons are investigated in chapter 3. This synthon exists in three geometries P, Q and R based on angular and distance criteria. The identification process is divided into five steps. The first step identifies IR signatures from very similar compounds, but with different topologies. The second step verifies earlier features and establishes IR marker bands. In the next step a graded IR protocol is formulated for stepwise discrimination of unknown systems. Such a graded method is applied for clarification of synthon ambiguities and in the identification of synthons in new compounds. Till now synthon information from crystal structures is used as a basis for IR study. Spectroscopy provides chemical information on intermolecular interactions. Is it possible to use such chemical information for crystal engineering? Chapter 4 deals with this aspect. Here, IR investigation is performed on the acid···amide heterodimer synthon. The initial analysis shows contradictory outcomes for synthon formation. According to IR, the N–H···O interaction is significantly destabilized in this synthon. Why then does the acid···amide synthon form? It is found that the answer lies in the higher stability of the other interaction, O–H···O, in the synthon. In other words, dimer formation will be preferred when the O‒H···O interaction is favoured. This is possible when the acidity of H-atom and the basicity of carbonyl O-atom is high. Based on this, a combinatorial study is performed varying the chemical nature of molecules, electron donating or withdrawing. Four quadrants are generated with different combinations of the molecular nature. The result of the combinatorial study shows different acid–amide oriented synthon preferences from different quadrants. A combination of all the observed synthons creates a structural landscape for the acid–amide system. A particular synthon associated with a specific quadrant is found to be responsible for the mechanical property of the synthesized cocrystals. Analysis on the structural aspects of mechanical properties allows for the formulation of models for property engineering. Can it be possible to use these models for targeted property design, other than serendipitous results? Crystal engineering is associated with three aspects, structure analysis, structure design and property engineering. Structure analysis is the first step in any crystal engineering exercise. It also explains the way by which the subject was started in the early days to correlate structure with property. This is the first phase or generation of crystal engineering. The second generation considers rational design of crystal structure which is facilitated by the concept of the supramolecular synthon. This phase has seen in the incorporation of different synthon based strategies to build a variety of supramolecular architectures. However, there is no prediction of a property which is the ultimate aim of crystal engineering. If one can achieve a desired property by predesign, then crystal engineering will see the final and higher stage which is termed third generation crystal engineering in chapter 5. The second part of the thesis discusses work is this direction, where mechanical properties are targeted and achieved by design using models from previous work. Chapter 6 discusses the engineering of elastic crystals from initial brittle precursors. A capping based model is proposed and used to prepare systems that can adopt the desired structure type. Among many other requirements, the crystals need some structurally buffering regions to show elasticity. Type-II electrostatic halogen bonds are used to construct such buffering regions. When the crystals are obtained according to the model type, they show reversible elastic deformation. σ-Hole based halogen bonds are crucial to the synthesis. But, during the project some adverse effects were noticed/realized for the use of halogen bonds. This suggests the need for an alternative methodology. A synthon that can mimic both the geometrical and chemical nature of σ-hole based halogen bonds would be useful to replace the earlier one. A search in this respect results in π-hole oriented orthogonal synthons based on C=O···C=O and NO2···NO2 interactions. A stepwise replacement procedure is applied to see and carry forward structural modularity in the new systems. Cocrystal systems are chosen for easy replacement by changing the constituents. Halogen bonds in cocrystals of the first step are partially substituted by a π-hole mimicking synthon in the second step and completely substituted in the third step. All the structures in the different steps are found to retain the same property, namely elasticity, although they possess dissimilar synthons. These aspects are discussed in chapter 7. Chapter 8 deals with the design of hand twistable helical crystals which are known to result during natural growth. Helical shape crystals are highly impactful for application in metamaterials and lithographic techniques, but at the same time occurrence of such morphology is unpredictable. Such shape generates from the periodic bending of crystals and thus needs multiple deformation directions. Here, a multistep crystal engineering procedure is adopted to get two directionally (2D) plastically bendable crystals, starting from one directional (1D) plastic crystals. Halogen bonds again play a major role in the design. The route follows the order 1D plastic crystals → 1D elastic crystals → 2D elastic crystals → 2D plastic crystals. These 2D plastic crystals are used to obtain hand-twisted helical crystals. Here, different properties namely elastic and plastic are seen in identically structured compounds. Once again, problems in using halogens are noticed. To address the issue of halogens, chapter 9 uses halogen bond/hydrogen bond equivalence to replace halogen bonds by geometrically and chemically similar hydrogen bonds. However, the first designed molecule in this respect did not result in the desired structure. The obligations are removed by applying the molecular/supramolecular equivalence strategy on the earlier molecule. Such an attempt gives another completely hydrogen bonded system that can now adopt the model structure and show a similar 2D plasticity. Crystals of this compound are also hand twistable. Third generation crystal engineering needs predesign models for targeted property engineering. In this context some differently structured elastic crystals are compared with common brittle crystals to identify and ascertain the structural requirements. This analysis helps in constructing different models for future engineering of elastic crystals. It also tabulates the structural and interaction differences in obtaining different mechanical properties namely shearing, plastic, elastic and brittle. In summary, these two major aspects for doing crystal engineering are highlighted in my thesis. One is the identification of robust synthons and the other is the use of synthon based structure design for property engineering. The first part of the thesis discusses the IR spectroscopic method for identification of synthons and then uses the spectral information for crystal structure engineering. The second part is related to deliberate crystal property engineering and uses structure-property relationships from the previous chapters and the literature to formulate predesign models and strategy. Achieving crystal properties in this way is expected to initiate the fast progress of the third generation crystal engineering.

Page generated in 0.0849 seconds