• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 10
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 23
  • 21
  • 21
  • 20
  • 15
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Design, production and evaluation of cross linked target proteins to an affibody-based carrier framework aimed for affinity protein: antigen structure determination using single particle Cryo-EM

Brunsell, Richard January 2021 (has links)
Small proteins are difficult to study at high resolution with single-particle cryo-electron microscopy (cryo-EM). In general, sample properties such as large size (> 80 kDa), symmetry and rigidity are key to utilize this technology. To facilitate structural studies of small proteins as well, using cryo-EM, this project aims to incorporate a photo-inducible cross-link in a large and symmetric scaffold that is amenable for study, and covalently bind small proteins of interest to this scaffold. The scaffold in this project consists of rabbit muscle aldolase (157 kDa in tetrameric state) with an engineered affibody affinity protein (7 kDa) attached to the N-terminus of each aldolase monomer via a rigid helix fusion. The affibody-domain of the scaffold will be cross-linked to small proteins of structural interest, with a focus on a model target consisting of a second affibody with affinity for the affibody displayed on the aldolase scaffold. Photoconjugation of the affibody Zwt was performed to crosslink both the Fc of IgG and the anti-idiotypic affibody Z963, revealing that a methionine acceptor in the target is preferable but not necessary for UV crosslinking using BPA. Binding of affibodies rigidly displayed on of the scaffold to targets such as affibodies and antibody fragments was demonstrated , using surface plasmon resonance (SPR). / Att studera små protein vid hög upplösning med enpartikelsrekonstruktion i kryo-elektronmikroskopi (kryo-EM) är utmanande. Generellt så krävs stora (> 80 kDa), symmetriska och stabila protein för att använda sig av kryo-EM. Med målet att möjliggöra strukturbestämning och strukturella studier av små protein, så ska detta projekt föra in en foto-aktiverad korslänk i ett stort och symmetriskt bärarprotein. Bäraren består av aldolas från kaninmuskel (157 kDa som tetramer) med en affibody (7 kDa) kopplad till N-terminalen av varje aldolas-monomer via en rigidt fuserad helix. Affibody-domänen av bärarproteinet kan bilda korslänkar till små protein vars struktur sedan kan studeras. Fokus i projektet är ett modellprotein som består av en annan affibody som binder den affibody i bäraren. Fotokonjugering av affibodyn Zwt utfördes för att skapa korslänkar till både Fc av IgG, samt den anti-idiotypiska affibodyn Z963, vilket påvisade att en metionin-mottagare i målproteinet är fördelaktigt för UV korslänkning med BPA, men inte ett krav. Affinitet av affibodies i bärarproteinet till målprotein såsom andra affibodies och antikroppsfragment påvisades.
52

Determining the structures of halogenated marine natural products by total synthesis

Dyson, Bryony Sara January 2011 (has links)
Elatenyne, a brominated C<sub>15</sub> acetogenin isolated from the red Laurencia elata marine algae, was originally assigned a pyranopyran structure. Previous total synthesis of the pyranopyran structure has found this assignment to be incorrect. During this work the revised 2,2’-bifuranyl skeleton of elatenyne was suggested, but this skeleton has 32 possible diastereomers. The most likely diastereomer of elatenyne was predicted using computational <sup>13</sup>C NMR chemical shift calculation in combination with the possible stereochemical outcomes from the proposed biosynthesis. Chapter 1 introduces the structural misassignment of natural products and describes the misassignment of elatenyne as well as a related chloro enyne. The use of computational methods and biosynthetic postulates to aid structure elucidation are also discussed. Chapter 2 describes the first generation synthesis of cross metathesis coupling partners required for the synthesis of elatenyne from D-mannitol. Chapter 3 describes the completed total synthesis of elatenyne, along with three derivatives and the (E)-isomer of elatenyne; itself a natural product. A comparison of the synthetic data with the isolation data for the natural products is presented, as well as comparison with the synthetic material of Kim and co-workers whose concurrent biomimetic total synthesis is also presented. Chapter 4 describes the modular nature of the devised synthetic route to access any diastereomer of elatenyne and its application to related 2,2’-bifuranyl natural products.
53

Détermination structurale de systèmes organiques par polarisation dynamique nucléaire et RMN solide / Atomic-level structure determination of organic assemblies by dynamic nuclear polarization enhanced solid-state NMR

Märker, Katharina 19 December 2017 (has links)
La détermination structurale supramoléculaire de solides organiques est d'une importance capitale pour la compréhension de leurs propriétés et de leur fonction. Des informations structurales à l’échelle atomique peuvent en principe être obtenues pour des composés en phase solide par la spectroscopie RMN (résonance magnétique nucléaire) combinée à la rotation de l’échantillon à l’angle magique (MAS). Cette technique est cependant confrontée à de fortes limitations de sensibilité, notamment en raison de la faible abondance isotopique naturelle (AN) d’isotopes clés, comme le carbone-13 et l’azote-15 (respectivement 1,1% et 0,37%).Une amplification de la sensibilité de plusieurs ordres de grandeur peut être obtenue avec la polarisation nucléaire dynamique (DNP), technique basée sur le transfert de polarisation des spins électroniques aux spins nucléaires. Les progrès récents dans la mise en œuvre pratique de la DNP ouvrent de nouvelles voies passionnantes, explorées dans cette thèse, pour la détermination de la structure des solides organiques.La première étape d’une étude structurale par RMN consiste en l'attribution spectrale des résonances. Malgré la faible AN des isotopes 13C et 15N, nous montrons dans ce travail que l’attribution complète de ces résonances pour un assemblage à base d’un dérivé de Guanosine est possible, grâce à l’utilisation d’expérience de corrélation multidimensionnelle 13C-13C et, pour la première fois, de spectre de corrélation 13C-15N.L'accent est alors mis sur l'obtention d'information structurale sous la forme de distances carbone-carbone et carbone-azote à partir d’expériences de transfert d’aimantation (expériences dites de « recouplage dipolaire »). Plusieurs stratégies sont discutées pour l’obtention de courbes de transfert d’aimantation sur des échantillons en AN. La dilution naturelle des isotopes 13C et 15N présente ici un avantage décisif pour ces mesures en réduisant de manière importante la troncature dipolaire, ce qui permet un transfert de polarisation sur de longues distances sans perturbation engendrée par la présence d’un troisième spin. Il en découle une description simplifiée de la dynamique de spin qui peut ainsi être facilement reproduite par des simulations numériques. Cette approche est démontrée expérimentalement sur des nanotubes du peptide diphénylalanine cyclique auto-assemblé (cyclo-FF). Les courbes de transfert d’aimantation 13C-13C et 13C-15N obtenues sont effectivement sensibles à de longues distances allant jusqu'à ~ 7 Å, et sont en excellent accord avec les simulations basées sur la structure cristalline du cyclo-FF. De plus, chaque courbe de transfert d’aimantation est constituée d’une superposition de contributions multiples intra et intermoléculaires, et contiennent donc une information structurale très riche.Il est ensuite montré que le contenu élevé de l'information contenu dans ces courbes de transfert d’aimantation et leur description théorique simple permettent de déterminer à la fois la structure moléculaire et la structure supramoléculaire du cyclo-FF. Ceci est réalisé à l'aide d'un code de calcul dédié qui crée de manière systématique des modèles structuraux par translation/rotation moléculaire et différentes symétries possible de la maille cristalline. Ces modèles sont ensuite classés en fonction de leur accord avec les données expérimentales.La thèse conclut en présentant des améliorations méthodologiques pour la séquence d'impulsions de recouplage dipolaire homonucléaire SR26. Cette séquence est particulièrement puissante pour une utilisation sur des échantillons en AN. Ces améliorations permettent une augmentation de l'efficacité du recouplage et l'acquisition de spectres de corrélation 2D avec de larges fenêtres spectrales.En résumé, cette thèse démontre que l'utilisation d'échantillons organiques en AN présente d’importants avantages pour leur étude structurale par RMN en phase solide qui devient possible avec la technique de DNP sous MAS. / Supramolecular structure determination of organic solids is of utter importance for understanding their properties and function. Structural insights at the atomic level can be provided by magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy. However, this technique faces strong limitations in sensitivity due to the low natural isotopic abundance (NA) of the key nuclei 13C and 15N (1.1 % and 0.37 %, respectively). Sensitivity enhancement by several orders of magnitude can be achieved with dynamic nuclear polarization (DNP) which is based on polarization transfer from electron to nuclear spins. The recent progress in the practical implementation of DNP opens up new and exciting possibilities for structure determination of organic solids which are explored in this thesis.The first step for structural studies with NMR is resonance assignment. The complete assignment of 13C and 15N resonances at NA is demonstrated here to be feasible based on DNP-enhanced 13C-13C and, for the first time, 13C-15N correlation spectra.The focus is then laid on obtaining structural information in the form of carbon-carbon and carbon-nitrogen distances from the buildup of polarization in dipolar recoupling experiments. Several strategies are discussed for recording such polarization buildup curves at NA. A decisive advantage of these measurements is that dipolar truncation is reduced to a great extent in samples at NA, enabling undisturbed polarization transfer over long distances and a simple description of the spin dynamics by numerical simulations. This is demonstrated experimentally on the self-assembled cyclic diphenylalanine peptide (cyclo-FF). The 13C-13C and 13C-15N buildup curves obtained are indeed sensitive to long distances (up to ~ 7 Å) and are in excellent agreement with the crystal structure of cyclo-FF. Moreover, each buildup curve represents a superposition of multiple intra- and intermolecular distance contributions and can therefore provide a wealth of structural information.It is subsequently shown that the high information content and the simple theoretical description of such polarization buildup curves enables determination of both the molecular and the supramolecular structure of cyclo-FF. This is achieved with the help of a dedicated computational code which creates structural models based on a systematic grid-search and ranks them according to their agreement with the experimental data.The thesis concludes by presenting improvements for the homonuclear dipolar recoupling pulse sequence SR26 which is a powerful sequence for use in NA samples. These improvements enable increased recoupling efficiency and the acquisition of 2D correlation spectra with large spectral widths.Overall, this thesis demonstrates that clear advantages lie in the use of NA samples for structural studies of organic solids, and that MAS-DNP enables structure determination which is mainly based on distance information from NMR data.
54

Structure and dynamics of fluorophore-labelled DNA helices probed by NMR-spectroscopy

Dallmann, André 11 February 2010 (has links)
Mittels NMR-Spektroskopie werden Störungen in Struktur und Dynamik von DNA untersucht, die durch den Einbau jeweils eines der beiden Fluorophore 2- Aminopurin (2AP) und 2-Hydroxy-7-nitrofluoren (HNF) hervorgerufen werden. Zu diesem Zweck werden die NMR-Strukturen der modifizierten Duplexe mit der Sequenz 5’-GCTGCAXACGTCG-3’ berechnet. Im Fall X=2AP (13mer2AP) ist die Partnerbase im Komplementärstrang ein T, während gegenüber X=HNF (13mer- HNF) eine abasische Stelle eingeführt wird. Durch den Vergleich der Ergebnisse zum 13mer2AP mit denjenigen des entsprechenden unmodifizierten DNA Doppelstranges (13merRef, X=A) konnte jegliche Änderung eindeutig dem Einbau von 2AP zugordnet werden. Für die NMR-Strukturen von 13merRef und 13mer2AP können kleine aber signifikante, über die gesamte Helix verteilte Strukturstörungen nachgewiesen werden. Experimente zum Iminoprotonenaustausch mit Wasser ergeben, daß der Einbau von 2AP die Basenpaarlebensdauern der 7 zentralen Basenpaare erniedrigt. Die kürzere Lebensdauer des 2AP:T Basenpaares kann jedoch nicht den schnellen Wasseraustausch im Sättigungstransfer- Experiment ohne Zugabe von Basenkatalysator erklären. Als Erklärung für diese Diskrepanz wird eine effizientere intrinsische Katalyse vermutet. Als mögliche, katalytisch aktive Stelle wird das T O4 Atom diskutiert, welches über die große Furche leicht zugänglich ist und das keine Wasserstoffbrückenbindung innerhalb des Basenpaares ausbilden kann. Die übergeordnete Struktur des 13merHNF ist eine B-Form DNA Helix. Die NOE Kreuzpeaks zu den Protonen im HNF können jedoch nur durch zwei verschiedene Orientierungen des HNFs in der helikalen Anordnung beschrieben werden. Das Verhältnis der beiden Orientierungen untereinander wird als 1:1 abgeschätzt. Störungen in der Basenpaardynamik werden durch die höhere Linienbreite und die starke Hochfeldverschiebung des T auf der 5’-Seite ausgehend von der abasischen Stelle angedeutet. / Structural and dynamic perturbations in DNA upon incorporation of either fluorophore, 2-Aminopurine (2AP) or 2-Hydroxy-7-nitrofluorene (HNF), are characterized by NMR spectroscopy. For this purpose the NMR solution structures of the modified DNA duplexes with the sequence 5’-GCTGCAXACGTCG-3’ are solved. For X=2AP (13mer2AP) the partner base in the complementary strand is T, while for X=HNF (13merHNF) an abasic site is introduced to avoid steric strain. By comparing results on 13mer2AP with the corresponding unmodified DNA duplex (13merRef, X=A), any perturbation can be unambiguously assigned to 2AP incorporation. For the NMR solution structure of 13merRef and 13mer2AP small but significant changes in helical parameters are found throughout the helix. Imino proton exchange measurements reveal an extended, distributed effect of 2AP incorporation on the lifetimes of the central seven base pair. However, the reduced base pair lifetime of 2AP:T cannot fully account for the rapid water exchange observed with saturation transfer experiments in the absence of base catalyst. This indicates enhanced intrinsic catalysis. As a possible catalytic site the T O4 atom opposite 2AP is discussed, which is easily accessible through the major groove and lacks a hydrogen bonding partner within the base pair. The overall NMR solution structure is found to be B-DNA. However the NOE cross-peaks involving the HNF residue can only be accounted for by two different orientations of the HNF inside the DNA helical stack. Their population ratio is estimated to be 1:1. Dynamical perturbation is indicated by the increased linewidth and strong upfield shift of the T residue to the 5’-side of the abasic site.
55

Quadratische Netze, Fehlstellen und Modulationen - Strukturchemie von Polyseleniden und Selenidditelluriden der Lanthanoidmetalle

Doert, Thomas 23 October 2006 (has links) (PDF)
In der vorliegenden Arbeit wurden Verbindungen untersucht, die reguläre oder verzerrte planar-quadratische Chalkogenschichten als ein wesentliches Strukturelement enthalten. Neben der Darstellung neuer Verbindungen und der Identifizierung des Phasenbestandes in den binären Zustandsdiagrammen Ln – Se lag das Hauptaugenmerk der Untersuchungen auf der Aufklärung der z. T. komplexen Überstrukturen und deren kristallchemischen Einordnung sowie auf den elektronischen Eigenschaften der Verbindungen. Methodisch kamen zur Strukturlösung und -beschreibung dabei sowohl Röntgen- und Elektronenbeugung, als auch hochauflösende Transmissionselektronenmikroskopie und Elektronenholographie zum Einsatz. Bei Strukturverfeinerungen der kommensurabel und inkommensurabel modulierten Strukturen wurde in vielen Fällen das Superraumkonzept angewandt, das eine einheitlichere Beschreibung verwandter Strukturen in höherdimensionalen Superraumgruppen ermöglicht. Im einzelnen wurden die Polyselenide PrSe2 und NdSe2 (beide kristallisieren im CeSe2-Typ) und SmSe1.9 (CeSe1.9-Typ) sowie die selenärmeren Verbindungen Ln8Se15 mit Ln = Y, Gd, Tb, Dy, Ho und Er (alle: Gd8Se15-Typ) hergestellt und erstmals strukturell charakterisiert. Diese Verbindungen kristallisieren als kommensurable Überstrukturen eines hochsymmetrischen Aristotyps, des ZrSSi-Typs. Die ebenfalls neu aufgefundenen Selenide Nd0.6Gd0.4Se1.85 und PrSe1.85 bilden dagegen inkommensurabel modulierte Strukturen aus und werden mit Hilfe des Superraumformalismus beschrieben. Die untersuchten Polyselenide weisen halbleitendes Verhalten auf und enthalten dreiwertige Lanthanoidmetalle. Die ebenfalls neu aufgefundenen Substanzklasse der Lanthanoidselenidditelluride LnSeTe2 (Ln = La, Ce, Pr, Nd, Sm) sind als ternäre Ordnungsvarianten des NdTe3-Typs zu beschreiben. Die Verbindungen LaSeTe2, CeSeTe2, PrSeTe2 und NdSeTe2 durchlaufen reversible, temperaturabhängige Phasentransformationen von einer nicht modulierten Hochtemperaturphase in eine inkommensurabel modulierte Tieftemperaturphase, die mit einem Metall-Halbmetall-Übergang korreliert.
56

Strukturelle und funktionelle Charakterisierung von dem mitochondrialen Membranprotein Menschlicher Spannungsabhängiger Anionen Kanal (HVDAC) und dem Membranprotein bindenden Conotoxin Conkunitzin-S1 mit Flüssigphasen NMR / Structural and functional characterisation of the mitochondrial membrane protein human voltage-dependent anion channel (HVDAC) and the membrane protein-targeting Conotoxin Conkunitzin-S1 by solution NMR

Bayrhuber, Monika 26 June 2007 (has links)
No description available.
57

Struktur-Eigenschaftskorrelationen in den silberionenleitenden Systemen AgI-AgMxOy (M=P,Cr,Mo) / Correlation of structure and properties in the silver-ion conducting systems AgI-AgMxOy (M=P,Cr,Mo)

Preusser, Andrea 29 October 2002 (has links)
No description available.
58

Structure Determination of Proteins of Unknown Origin by a Marathon MR Protocol and Investigations on Parameters Important for Molecular Replacement Structure Solution

Hatti, Kaushik S January 2016 (has links) (PDF)
Occasionally, crystallisation of proteins works in mysterious ways! One might obtain crystals of a protein of unknown identity in place of the protein for which crystallisation experiments were performed. If the investigator is not aware of such possibilities, valuable time and resources might be lost in attempting to determine the structure of such proteins. Instances of non-target protein getting crystallised may not come to light at all or may be realised only when attempts to determine the structure completely fail by conventional procedures after collecting and processing the diffraction data. Usually, it is not possible to reproduce the crystals of the same protein as their occurrence is serendipitous. Such rare instances of crystallisation are probably caused by fluctuating environmental or crystallisation conditions and are not reproducible. It could also be due to contaminating microbes, which is more likely when the experimentalist is not well experienced. Therefore, experimental phasing of the data collected on serendipitously obtained crystals could be a challenging task. With the rapid increase in the number of structures deposited in the protein data bank (PDB), molecular replacement has become the method of choice for structure determination in macromolecular X-ray crystallography. This is due to the fact that it is possible to select a suitable phasing model for most target proteins based on their sequence information. However, if the identity of the target protein itself is uncertain, all attempts of structure determination using phasing models selected on the basis of target protein sequence-dependent search would fail. Sequence-independent ab initio phasing techniques such as ARCIMBOLDO (Meindl et al., 2012), which has recently become available, could provide leads only if the non-target protein is an all-α-protein and the associated diffraction data extends to a resolution better than 2 Å. Even then, the success rate with this technique is low. Hence, it becomes important to employ a sequence-independent method of structure determination for such mysteriously obtained crystals. This thesis reports crystal structures of proteins which are serendipitously crystallised using a large-scale application of Molecular Replacement (MR) technique (referred in this thesis as MarathonMR). This thesis also presents an evaluation of molecular replacement strategies for structure determination. The thesis begins with an overview of crystallographic methods of structure determination with an emphasis on the method of molecular replacement (Chapter 1). The most prominent of the results obtained in the course of these investigations pertains to a crystal obtained during routine crystallisation of a viral protein mutant in the year 2011. The cell parameters were different from cell constants of crystals obtained with other known viral protein mutants crystallised earlier in the same laboratory. Unfortunately, this crystal could not be reproduced in the same form in subsequent crystallisation trials. All attempts to determine the structure through conventional molecular replacement techniques using a combination of domains from a nearly identical virus coat protein protomer as the phasing model had failed. The data was shelved as “not-solvable” in late 2011. However, the crystal had diffracted to 1.9 Å and had excellent merging statistics. Therefore, the data was retrieved recently and additional attempts were made to determine the structure through phasing techniques that have become available recently. Techniques such as AMPLE (Bibby et al., 2013) and Rosetta (DiMaio, 2013), which use large-scale homology models coupled with molecular replacement, did not lead to meaningful solutions. A couple of helices identified by ARCIMBOLDO (Meindl et al., 2012) were neither correct (retrospectively) nor sufficient to determine the entire structure. Given the excellent merging statistics of the crystal data, there was significant motivation to determine the structure, though it meant developing a fresh protocol. It was at this time that we came across the work of Stokes-Rees and Sliz (2010) in which they had demonstrated that it is possible to determine structure of proteins of unknown identity by employing almost every known protein structure as a potential phasing model. The work reported in the thesis is a result of an earlier project to examine the relationship between properties of phasing models and the quality of target protein model generated through MR by employing large scale molecular replacement runs. This project was initiated because of the realisation that the recent explosion in crystallographic structural studies has resulted in near complete exploration of the “fold-space” of proteins and PDB now has a representative structure for most plausible folds of proteins. Some folds are highly represented in the PDB. Hence, it is likely that there would be at least one homologue in the PDB which could be used as a phasing model to successfully determine the structure of a protein of unknown identity if the diffraction dataset is of excellent quality. Hence, the single dataset which had diffracted to 1.9 Å resolution was used to develop a MarathonMR procedure for structure determination. MarathonMR procedure takes sequence-independent approach to structure determination and employs large-scale molecular replacement calculations to identify the closest homologue (in structural terms initially). This protocol is described in Chapter 2 (Materials and methods) of the thesis. Through MarathonMR, structure of the dataset which had remained unsolved for 5 years was finally determined. Nearly complete sequence of the polypeptide could be deduced by inspecting the electron density map due to the high resolution and quality of the map. The protein was found to be a phosphate binding protein from a soil bacterium Stenotrophomonas maltophilia (SmPBP). The way in which the structure was determined and possible explanations for the mysterious source of this protein which had crystallised instead of the target protein is discussed in Chapter 3. Though MarathonMR procedure was developed to solve a single dataset, it was soon realised that the same procedure could be applied to other similar datasets, all of which had diffracted to reasonable resolutions with good merging statistics but had remained unsolved for unknown reasons. Among such datasets, one of the datasets which was collected in 2007 and had diffracted to 2.3 Å resolution had cell parameters very close to that of SmPBP. Hence, a poly-alanine model of the structure of SmPBP, which was determined by then, was used as the phasing model to run molecular replacement and the structure was readily solved. It was surprising to note that SmPBP had crystallised serendipitously not once but twice, once in 2011 resulting in crystals that diffracted to 1.9 Å resolution and earlier in 2007 in crystals that diffracted to 2.3 Å resolution independently by two different investigators in the same laboratory. Both the structures are nearly identical and a comparison of these structures is presented in Chapter 4. Structure of SmPBP determined at 2.3 Å resolution by MarathonMR also corresponds to the dataset that had remained unsolved for the longest period of time (9 years). This success of structure determination after the lapse of such a long period emphasises the importance of carefully preserving X-ray diffraction data irrespective of its immediate outcome. In Chapter 5 of the thesis, another instance of non-target protein crystallisation, the structure of which was determined using the MarathonMR procedure is described. The crystal was obtained while carrying out crystallisation of mutants of a survival protein (SurE) expressed in Salmonella typhimurium when the bacterium is subjected to environmental or internal stresses. The original investigator had used the structure of SurE as the phasing model to determine structure of the mutant crystals and obtained a model with R and Rfree of 35% and 40%, respectively. However, the model did not refine further to lower R-factors suggesting that the solution obtained may not be correct. MarathonMR indicated that the fold of the crystallised protein could be similar to that of glycerol dehydrogenase. As SurE shares some fold similarity with one of the domains of GlyDH, the original investigator might have been able to achieve a limited success with R/Rfree factors of 35% and 40%, respectively. As the merging statistics for this diffraction data set was poor, the diffraction images were reprocessed in XDS program on Xia2 automated spot processing pipeline. The data statistics indicated merohedral twinning (14%). However, using appropriate parameters, it was possible to refine the structure obtained by MarathonMR to acceptable R/Rfree using the Refmac program. Four protomers were present in the crystal asymmetric unit (ASU). Non-crytsallographic symmetry averaging of electron density over these four molecules further improved the electron density. As the data was limited to 2.7 Å resolution, it was not possible to deduce the identity of every residue of the protein unambiguously based solely on the resulting electron density map. With the identity of the amino acids that could be deduced with certainty, it was clear that the protein belongs to glycerol dehydrogenase from a species of Enterobacteriacea family. Though a similar structure of glycerol dehydrogenase has been reported from Serratia, there are clear differences in many unambiguously determined residues which suggest that the protein is not from Serriatia. The protein has been named EnteroGlyDH as the source of the protein is likely to be from a species of Enterobacteriacea family. The structure of the protein, its biochemical implications and possible reasons for the serendipitous crystallisation of a non-target are discussed. Chapter 6 discusses the structure determination of an inorganic pyrophosphatase and catalytic domain of Succinyl transferase, the crystals of which had diffracted to 2.3 Å and 3.1 Å, respectively, but had remained unsolved. Neither of the datasets corresponds to the intended target proteins. The dataset corresponding to the protein whose structure was determined as that of an inorganic pyrophosphatase was provided by a colleague from a different laboratory in the Indian Institute of Science. It is interesting to note that the investigator had carried this dataset to one of the CCP4 workshops and had tried to determine the structure with the help of experts in the workshop. The attempts to determine its structure had however failed for reasons that are obvious now. The original investigator was unfortunately making efforts with an erroneous assumption on the identity of the target protein. As these enzymes are well studied, their structures and functions are briefly discussed. It is already well established that molecular replacement is being used with increasing frequency as the phasing technique when compared to other experimental phasing techniques. With the ever growing number of structures in the PDB, high population of certain folds and a near-plateau attained in the identification and growth of new folds, it is reasonable to expect that molecular replacement will be used even more frequently in the years to come. Therefore, for carrying out molecular replacement for a given diffraction dataset of a target protein, it is very likely that several homologous structures would be available in the PDB that could be used as potential phasing models. Hence, it becomes important to understand the influence of phasing model on the quality and accuracy of model generated through MR to achieve the best structure solution. To understand this relationship between phasing model and model obtained by MR protocol, re-determination of already known structures deposited in the PDB starting with their respective structure factors and various phasing models was initiated. Structures belonging to TIM beta/alpha-barrel (SCOPe ID: c.1) and Lysozyme-like (SCOPe ID: d.2) folds were chosen as targets. The structure of each target was re-determined serially starting with poly-alanine models of all available unique homologues as phasing models. Due to the multi-dimensional nature of this study, the results obtained were represented in a graphical form with nodes and edges. Detailed methodology of the work carried out and the data representation model are discussed in the Chapter 2 (Materials and methods). It was found that after a certain sequence identity cut-off, sequence identity between phasing model and target seems to have little influence on the quality and accuracy of the model generated through MR. Instead, other qualities of the phasing model such as Rfree and RSCC influence the quality of MR models. These results are discussed in Chapter 7. Learning from the work reported in this thesis are discussed in concluding chapter. The possible logical and programmatic upgrades to MarathonMR protocol and future path in which the relationship between phasing models and models generated through MR can be studied are discussed in Chapter 8 (Conclusion and future prospects).
59

Lidské glutamátkarboxypeptidasy II a III / Human glutamate carboxypeptidases II and III

Navrátil, Michal January 2016 (has links)
The herein presented Ph.D. dissertation describes kinetic and structural characterization of human glutamate carboxypeptidases II and III (GCPII and GCPIII) using a complete panel of their natural substrates. These enzymes hydrolyze C-terminal glutamate from their substrates. They share 67 % sequence identity and also similar enzymatic activities. This thesis quantitatively compares human GCPII and GCPIII in terms of their ability to hydrolyze the substrates N-acetyl-L-aspartyl-L-glutamate (NAAG), folyl-poly-γ-L-glutamic acids (FolGlun) and β-citryl-L-glutamate (BCG). We demonstrated that GCPIII hydrolyzes its substrates in a metal- dependent manner, that BCG is a specific substrate of GCPIII, and that NAAG and FolGlun are specific substrates of GCPII. We also provide indirect biochemical evidence that GCPIII might feature a heterometallic active-site cluster. Additionally, we characterized the relevance of a surface exosite of GCPII, the arene-binding site (ABS), for the hydrolysis of FolGlun substrates using mutagenesis and enzyme kinetics and showed that polymorphic His475Tyr variant of GCPII hydrolyzes FolGlun substrates with the same kinetic parameters as the wild-type enzyme. Furthermore, this thesis focuses on structural aspects of the substrate specificities of GCPII and GCPIII: we present...
60

Quadratische Netze, Fehlstellen und Modulationen - Strukturchemie von Polyseleniden und Selenidditelluriden der Lanthanoidmetalle

Doert, Thomas 20 October 2006 (has links)
In der vorliegenden Arbeit wurden Verbindungen untersucht, die reguläre oder verzerrte planar-quadratische Chalkogenschichten als ein wesentliches Strukturelement enthalten. Neben der Darstellung neuer Verbindungen und der Identifizierung des Phasenbestandes in den binären Zustandsdiagrammen Ln – Se lag das Hauptaugenmerk der Untersuchungen auf der Aufklärung der z. T. komplexen Überstrukturen und deren kristallchemischen Einordnung sowie auf den elektronischen Eigenschaften der Verbindungen. Methodisch kamen zur Strukturlösung und -beschreibung dabei sowohl Röntgen- und Elektronenbeugung, als auch hochauflösende Transmissionselektronenmikroskopie und Elektronenholographie zum Einsatz. Bei Strukturverfeinerungen der kommensurabel und inkommensurabel modulierten Strukturen wurde in vielen Fällen das Superraumkonzept angewandt, das eine einheitlichere Beschreibung verwandter Strukturen in höherdimensionalen Superraumgruppen ermöglicht. Im einzelnen wurden die Polyselenide PrSe2 und NdSe2 (beide kristallisieren im CeSe2-Typ) und SmSe1.9 (CeSe1.9-Typ) sowie die selenärmeren Verbindungen Ln8Se15 mit Ln = Y, Gd, Tb, Dy, Ho und Er (alle: Gd8Se15-Typ) hergestellt und erstmals strukturell charakterisiert. Diese Verbindungen kristallisieren als kommensurable Überstrukturen eines hochsymmetrischen Aristotyps, des ZrSSi-Typs. Die ebenfalls neu aufgefundenen Selenide Nd0.6Gd0.4Se1.85 und PrSe1.85 bilden dagegen inkommensurabel modulierte Strukturen aus und werden mit Hilfe des Superraumformalismus beschrieben. Die untersuchten Polyselenide weisen halbleitendes Verhalten auf und enthalten dreiwertige Lanthanoidmetalle. Die ebenfalls neu aufgefundenen Substanzklasse der Lanthanoidselenidditelluride LnSeTe2 (Ln = La, Ce, Pr, Nd, Sm) sind als ternäre Ordnungsvarianten des NdTe3-Typs zu beschreiben. Die Verbindungen LaSeTe2, CeSeTe2, PrSeTe2 und NdSeTe2 durchlaufen reversible, temperaturabhängige Phasentransformationen von einer nicht modulierten Hochtemperaturphase in eine inkommensurabel modulierte Tieftemperaturphase, die mit einem Metall-Halbmetall-Übergang korreliert.

Page generated in 0.0993 seconds