Spelling suggestions: "subject:"3structure function analysis"" "subject:"bstructure function analysis""
1 |
Aromaticity and Flexibility of Transmembrane Helix 12 Contribute to Substrate Recognition and Transport in Human P-GlycoproteinJason A Goebel (9755543) 14 December 2020 (has links)
Human p-glycoprotein (P-gp) is an ATP-binding cassette transporter that actively transports a diverse set of substrates at the plasma membrane. Specifically, P-gp is expressed most highly at important blood tissue barriers on the lumenal side of endothelial cells and secretory tissues asymmetrically where it provides generalized protection against xenobiotics due to its promiscuous substrate binding pocket. Substrates typically interact with P-gp within the inner leaflet of the plasma membrane before being effluxed through large conformation changes driven by ATP binding and hydrolysis. Since many small molecule drugs are substrates of P-gp and P-gp has the ability to transport chemically and structurally diverse molecules, delivery of bioavailable small molecule therapies and treatment of diseases beyond blood-tissue barriers may be difficult. In cancer, expression of P-gp may confer a multidrug resistance phenotype due to upregulation of the MDR1 gene, which encodes P-gp, in response to treatment with chemotherapies. Treatments of diseases beyond blood-tissue barriers and some cancers may be more complex given the protective role of P-gp coupled with it promiscuous substrate binding site.<br>Many studies of P-gp have been centered around understanding the structure function relationship of how P-gp effluxes small molecules across the plasma membrane. Here we have used a transient Vaccinia virus expression system to rapidly express many mutants of P-gp in human cells for analysis. Transient expression using the Vaccinia system was optimized to produce a large amount of protein while avoiding significant cell death. Optimization of the Vaccinia expression system has also helped to show that changes in P-gp surface expression are not correlated to changes in substrate accumulation within cells expressing P-gp, a topic that has yet to be addressed within the field of P-gp study. Reduced surface expression of P-gp to 68% maintained the same level of reduced cellular accumulation of two substrates, calcein-AM and rhodamine 123, relative to a WT P-gp control. Further study of P-gp mutations revealed a Y998A mutation had a 90% reduction of surface expression but the same reduction of cellular accumulation of rhodamine 123 further supporting that changes in surface expression do not correlate to changes in substrate transport.<br>We then sought to demonstrate how flexibility in transmembrane helix (TMH) 12 of P-gp affected overall stability and transport ability in vitro. TMH 12 in inward facing conformations shows a region of decreased hydrogen bonding in the backbone of the helix leading to a “kink” present in many crystal structures of C. elegans and mouse P-gp as well as in an occluded structure of human P-gp. Outward facing crystal structures of C. elegans, mouse, and human P-gp show TMH 12 where the backbone of the helix is fully hydrogen bonded and ordered. The change in hydrogen bonding pattern and the presence of the kink in TMH 12 suggest the importance of flexibility in the function of TMH 12. Clustal Omega was used to align the primary structure of P-gp between 8 species and a conserved sequence of 996-PDYAKA-1001 was identified aligning with the kink observed in crystallographic data. The kinked nature of this region led to our development of a rigid poly-alanine mutation and a flexible poly-glycine mutation based on the propensity of these amnio acids to form helices. The more flexible poly-glycine mutation obtained no significant transport while the poly-alanine mutation maintained some ability to transport fluorescent substrate relative to a WT control. Crosslinking of the nucleotide binding domains (NBDs) revealed a decrease of NBD dimerization likely correlating to decreased transport. Thus, some degree of flexibility within the kink region is critical for substrate transport as rigid and flexible mutations of this region abrogate transport of fluorescent substrates.<br>While the substrate binding pocket it located towards the interior of P-gp within the lipid bilayer, it has been theorized that substrates may interact with P-gp at the lipid-protein interface of the inner leaflet near portals for substrate entry formed by pairs of helices either side of the protein. To test this hypothesis, aromatic residues on TMH 12 and adjacent elbow helix 2 near the interface region of the inner leaflet, that have also been observed to interact with a cyclic peptide in a crystal structure of P-gp, were mutated to alanine. Y998, on TMH 12, was shown to interact with the cyclic peptide and is ideally located at the protein-lipid interface near a surface formed by elbow helix 2 and TMH 9 and was observed to have the largest effect on substrate accumulation. Accumulation of fluorescent substrates, relative to WT P-gp, was increased though not all substrates were affected similarly. No increase of accumulation was observed with rhodamine 123 while accumulation of BD-prazosin increased 65% relative to WT P-gp. It is to be expected that the large diversity of substrates recognized by P-gp would interact preferentially with carrying residues at the protein-lipid interface similar to observations of substrate binding at the substrate binding pocket. Variability in accumulation signifies that substrates do interact with P-gp at the lipid-protein interface and substrates interact differently at this interface similarly to substrate interaction at the substrate biding pocket.<br>
|
2 |
Mode of action studies of defensin peptides from native South African Brassicaceae speciesBarkhuizen, Helmien 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Plant defensin peptides have become promising and attractive candidates to be used as
antifungal agents in agricultural biotechnology. These peptides have a broad spectrum
antifungal activity and play a vital role in the innate immune system of plants. Plant diseases
caused by fungi are a major contributor to the decrease in the quality and safety of agricultural
products. Due to the dangerous effects and negative environmental impact of pesticides, an
effective, safe, natural and durable method to control crop pathogens has therefore become one
of the major concerns in modern agriculture. Although these peptides are promising and
attractive candidates, their precise mechanism of action is to date still unknown. Several
common observations have been made. These include the antagonistic effect of cations on the
activity of plant defensins. It is of vital importance to understand the underlying mechanism of
the cation-antagonistic effect on the antifungal potency of defensin peptides in order to evaluate
the possible contribution to defence reactions against microorganisms in planta.
To this end we set out to characterize the effect of cations in the form of biological salts,
NaCl, KCl, MgCl2 and CaCl2 on the structural stability and activity in terms of growth inhibition,
morphological effects and permeabilization. In order to perform these characterization
experiments, a production method resulting in a greater yield and involving simple and rapid
purification methods was required. Heliophila coronopifolia peptides have previously been
produced in a bacterial system, however the purification methods were tedious resulting in poor
yields. Pichia pastoris was selected as production system as several other plant defensins have
been successfully produced in this eukaryotic system. Hc-AFP1 and Hc-AFP3 was successfully
produced using the Pichia production system and rendered active peptides. Hc-AFP2 and Hc-
AFP4 was, however, not produced correctly, due to a post-translational modification event
leading to the cyclization of the N-terminal glutamine to generate pyroglutamic acid. This
modification negatively influenced the activity of these peptides. An active Hc-AFP2 could be
produced by replacing the production buffer with a reduced ionic buffer.
The effect of divalent and monovalent cations on the secondary structure of Hc-AFP1 was
evaluated by circular dichroism spectroscopy. These cations induced a conformational change
in the secondary structure of Hc-AFP1, with NaCl and MgCl2 inducing a more defined secondary
structure and KCl and CaCl2 inducing a less defined secondary structure. Monovalent cations
caused a slight reduction in the growth inhibition activity of Hc-AFP1 on Botrytis cinerea,
however, characteristic hyperbranching and other morphogentic effects were still visible.
Divalent cations had a greater antagonistic effect on the activity of Hc-AFP1, completely
abolishing the growth inhibitory activity of the peptide, but the induced morphological effects on
hyphae remained present. The activity of Hc-AFP1 to permeabilize B. cinerea hyphae was not
influenced by the addition of cations, however it was in fact increased to up to 10-fold. However,
since the growth inhibition activity of Hc-AFP1 was reduced in the presence of the biological
salts indicates that permeabilization is not the sole activity responsible for growth inhibition
caused by Hc-AFP1. This peptide probably has an alternative/primary target and more complex
MOA. This is the first known report of the investigation of the influence of cations on the
structure of plant defensin peptides. It is clear that cations induce a secondary structural
conformational change in Hc-AFP1. This may be linked to the antagonism on the activity of this
peptide. This study provides significant progress towards the structure-function analysis of plant
defensins. / AFRIKAANSE OPSOMMING: Plantdefensinpeptiede word beskou as belowende en aantreklike kandidate vir gebruik as
swammiddles in agribiotegnologie. Hierdie peptiede beskik oor breë spektrum antifungiese
aktiwiteit en speel ‘n essensiële rol in die ingebore immuunsisteem van plante. Plant siektes wat
deur swamme veroorsaak word dra betekenisvol by tot die afname in die kwaliteit en veiligheid
van landbouprodukte. As gevolg van die skadelike effekte en negatiewe omgewingsimpak van
plaagdoders, het effektiewe, veilige, natuurlike en duursame metodes om gewaspatogene te
beheer, van die belangrikste vraagstukke van moderne landbou geword. Alhoewel hierdie
peptiede belowende en aantreklike kandidate is vir die toepassing, is hulle presiese meganisme
van aksie tot vandag toe steeds onbekend. Verskeie algemene waarnemings is egter al
gemaak. Dit sluit die antagonistiese effek van katione op die aktiwiteit van
plantdefensinpeptiede in. Dit is kernbelangrik om die onderliggende meganisme van die
katioon-antagonistiese effek op die antifungiese effektiwiteit te verstaan om die moontlike
bydrae van die peptiede tot die verdedigingsreaksies teen mikro-organismes in planta te
evalueer.
Met die doel voor oë het ons gemik om die effek van katione, spesifiek in die vorm van die
biologiese soute NaCl, KCl, MgCl2 en CaCl2, op die strukturele stabiliteit en aktiwiteit in terme
van groei inhibisie, morfologiese effekte en permeabilisasie te karakteriseer. Om uiteindelik
hierdie karakterisasie eksperimente uit te voer was dit nodig om ‘n metode met ‘n groter
opbrengs en wat vinnige suiwering van die peptied ondersteun, te optimiseer. Heliophila
coronopifolia peptiede was voorheen in ‘n bakteriese sisteem geproduseer, maar die
suiweringsmetodes was tydsaam en het gelei tot ‘n swak opbrengs. Pichia pastoris is dus
geselekteer as die produksie sisteem aangesien verskeie ander plantdefensinpeptiede al
suksesvol geproduseer is in hierdie eukariotiese sisteem. Hc-AFP1 and Hc-AFP3 is suksesvol
vervaardig in die Pichia sisteem en het aktiewiteit getoon. Hc-AFP2 and Hc-AFP4 kon egter nie
korrek vervaardig word nie as gevolg van ‘n na-vertalingsverandering wat gelei het tot die
siklisering van die N-terminale glutamien, om piroglutamiensuur te lewer. Hierdie verandering
het die aktiwiteit van die peptied negatief beinvloed. ‘n Aktiewe Hc-AFP2 kon wel vervaardig
word deur die produksiebuffer te vervang met ‘n lae-ionise buffer.
Die effek van divalente en monovalente katione op die sekondêre struktuur van Hc-AFP1 is
ge-evalueer deur van sirkulêre dikroisme spektroskopie gebruik te maak. Hierdie katione het ‘n
vouingsverandering in die sekondêre struktuur van Hc-AFP1 geïnduseer, NaCl and MgCl2 het ‘n
meer gedefinieërde sekondêre struktuur induseer, terwyl KCl and CaCl2 ‘n minder gedefinieërde
sekondêre struktuur geinduseer het. Monovalente katione het ‘n effense vermindering in die
groei-inhibisie aktiwiteit van Hc-AFP1 op Botrytis cinerea veroorsaak, alhoewel kenmerkende
hife-oorvertakking en ander morfologiese effekte nogsteeds sigbaar was. Divalente katione het
‘n sterker antagonistiese effek gehad op die aktiwiteit van Hc-AFP1, waar dit totaal en al die
groei-inhibisie aktiwiteit van die peptied vernietig het, alhoewel die geïnduseerde morfologiese
effekte op die hiffes steeds sigbaar was . Die aktiwiteit van Hc-AFP1 om B. cinerea hyphae te
permeabiliseer is nie negatief beinvloed deur die byvoeging van katione nie, tewens dit het die
aktiwiteit tot 10-voudig verhoog. Aangesien die groei-inhibisie aktiwiteit van Hc-AFP1 nie
verminder is in die teenwoordigheid van die biologiese soute nie, dui dit aan dat permeabilisasie
nie die enigste aktiwiteit is wat die groei inhibisie veroorsaak het nie. Die peptied het dus
moontlik ‘n alternatiewe of primêre teiken en ‘n meer komplekse meganisme van aksie. Dit is
die eerste verslag wat die invloed van katione op die struktuur van plantdefensinpeptiede
ondersoek het. Dit is duidelik dat katione ‘n sekondêre strukturele vouingsverandering in Hc-AFP1 induseer. Hierdie verandering mag dalk bydra tot die antagonistiese uitwerking op die
aktiwiteit van hierdie peptied. Hierdie studie het betekensisvolle vordering gemaak met die
analise van die struktuur-funksie interaksie van plantdefensinpeptiede. / The National Research Foundation (NRF), Institute of Wine Biotechnology (IWBT),
THRIP and Winetech for financial assistance.
|
3 |
Étude des processus de biogenèse des petites particules ribonucléoprotéiques nucléolaires à boîtes C/D (snoRNP C/D) chez la levure Saccharomyces cerevisiae : caractérisation fonctionnelle et structurale d'une machinerie dédiée à l'assemblage de ces RNP / Study of the biogenesis process of box C/D small nucleolar ribonucleoparticles (C/D snoRNPs) in the yeast Saccharomyces cerevisiae : functional and structural characterization of a machinery dedicated to assembly of these RNPsRothé, Benjamin 30 March 2012 (has links)
Les protéines de la famille L7Ae sont les constituants de nombreuses RNP essentielles. Chez les vertébrés, les particules snoRNP C/D et H/ACA sont impliquées dans la biogenèse des ribosomes, la UsnRNP U4 dans l'épissage des pré-ARNm, le complexe télomérase dans la réplication des télomères, et les mRNP SECIS dans la traduction des sélénoprotéines. Comme c'est le cas pour la majorité des RNP eucaryotes, leur assemblage, sous forme d'entités fonctionnelles, ne constitue pas un processus autonome et requiert l'intervention de facteurs spécialisés. En basant notre étude sur l'assemblage des snoRNP C/D, dans l'organisme modèle Saccharomyces cerevisiae, et en utilisant des approches de biologie moléculaire, de biochimie et de génétique, nous avons entrepris de caractériser ces événements. Nos travaux ont contribué à identifier un ensemble de protéines, agissant de façon coordonnée au sein d'une machinerie conservée entre la levure et l'homme. Cette dernière est composée de deux principales sous-unités : (i) Rsa1p/NUFIP, une protéine plate-forme, qui interagit avec certaines protéines de la famille L7Ae et facilite l'assemblage des RNP, (ii) le complexe R2TP (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), qui pourrait opérer des remodelages conformationnels nécessaires à la formation des RNP matures. En plus de ces acteurs centraux, d'autres facteurs sont apparus intimement liés à ce mécanisme. La protéine Hit1p/TRIP3, interagit notamment avec Rsa1p/NUFIP et s'est avéré requise pour assurer sa stabilité chez la levure. La chaperonne HSP90, dont le rôle est prédominant chez l'homme, exerce son activité sur certains constituants des RNP. Enfin, la protéine Bcd1p/BCD1 pourrait être associée à cette machinerie dans le cadre spécifique de l'assemblage des snoRNP C/D / The L7Ae family proteins are essential components of many RNPs. In vertebrates, C/D and H/ACA snoRNPs are involved in ribosome biogenesis, the U4 snRNP in pre-mRNA splicing, the telomerase complex in telomeres replication, and mRNP SECIS in selenoproteins translation. Like most eukaryotic RNPs, assembly in functional entities is not an autonomous process and requires the intervention of specialized factors. Basing our study on the assembly of C/D snoRNP in the model organism Saccharomyces cerevisiae, and using approaches of molecular biology, biochemistry and genetics, we undertook to decipher these mechanisms. Our work has helped to identify a set of proteins, acting in a coordinated manner within a machinery conserved between yeast and human. This machinery consists of two major subunits: (i) Rsa1p/NUFIP, a platform protein that interacts with some proteins of the L7Ae family and facilitates the RNPs assembly, (ii) the R2TP complex (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), which could induce conformational remodeling necessary for the formation of mature RNPs. In addition to these key players, other factors appeared closely linked to this mechanism. The Hit1p/TRIP3 protein interacts with Rsa1p/NUFIP and is required to ensure its stability in yeast. HSP90 chaperone, whose role is predominant in human, operates on some components of the RNPs. Finally, the Bcd1p/BCD1 protein is associated specifically with this machinery during C/D snoRNPs assembly
|
Page generated in 0.0961 seconds