• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • Tagged with
  • 17
  • 17
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ULTRA LOW POWER READ-OUT INTEGRATED CIRCUIT DESIGN

Chen, Jian 27 August 2012 (has links)
No description available.
12

Design and Evaluation of an Ultra-Low PowerLow Noise Amplifier LNA

yasami, saeed January 2009 (has links)
<p>This master thesis deals with the study of ultra low power Low Noise Amplifier (LNA) for use inmedical implant device. Usually, low power consumption is required for a long battery lifetime andlonger operation. The target technology is 90nm CMOS process.First basic principle of LNA is discussed. Then based on a literature review of LNA design, theproposed LNA is presented in sub-threshold region which reduce power consumption through scalingthe supply voltage and through scaling current.The circuit implementation and simulations is presented to testify the performance of LNA .Besides thepower consumption simulated under the typical supply voltage (1V), it is also measured under someother low supply voltages (down to 0.5V) to investigate the minimum power consumption and theminimum noise figure. Evaluation results show that at a supply voltage of 1V the LNA performs a totalpower consumption of 20mW and a noise of 1dB. Proper performance is achieved with a current ofdown to 200uA and supply voltage of down to 0.45V, and a total power consumption of 200uW</p>
13

Design and Evaluation of an Ultra-Low PowerLow Noise Amplifier LNA

yasami, saeed January 2009 (has links)
This master thesis deals with the study of ultra low power Low Noise Amplifier (LNA) for use inmedical implant device. Usually, low power consumption is required for a long battery lifetime andlonger operation. The target technology is 90nm CMOS process.First basic principle of LNA is discussed. Then based on a literature review of LNA design, theproposed LNA is presented in sub-threshold region which reduce power consumption through scalingthe supply voltage and through scaling current.The circuit implementation and simulations is presented to testify the performance of LNA .Besides thepower consumption simulated under the typical supply voltage (1V), it is also measured under someother low supply voltages (down to 0.5V) to investigate the minimum power consumption and theminimum noise figure. Evaluation results show that at a supply voltage of 1V the LNA performs a totalpower consumption of 20mW and a noise of 1dB. Proper performance is achieved with a current ofdown to 200uA and supply voltage of down to 0.45V, and a total power consumption of 200uW
14

Comprehensive Analysis of Leakage Current in Ultra Deep Sub-micron (udsm) Cmos Circuits

Rastogi, Ashesh 01 January 2007 (has links) (PDF)
Aggressive scaling of CMOS circuits in recent times has lead to dramatic increase in leakage currents. Previously, sub-threshold leakage current was the only leakage current taken into account in power estimation. But now gate leakage and reverse biased junction band-to-band-tunneling leakage currents have also become significant. Together all the three types of leakages namely sub-threshold leakage, gate leakage and reverse bias junction band-to-band tunneling leakage currents contribute to more than 25% of power consumption in the current generation of leading edge designs. Different sources of leakage can affect each other by interacting through resultant intermediate node voltages. This is called loading effect and it leads to further increase in leakage current. On the other hand, sub-threshold leakage current decreases as more number of transistors is stacked in series. This is called stack effect. Previous works have been done that analyze each type of leakage current and its effect in detail but independent of each other. In this work, a pattern dependent steady state leakage estimation technique was developed that incorporates loading effect and accounts for all three major leakage components, namely the gate leakage, band to band tunneling leakage and sub-threshold leakage. It also considers transistor stack effect when estimating sub-threshold leakage. As a result, a coherent leakage current estimator tool was developed. The estimation technique was implemented on 65nm and 45nm CMOS circuits and was shown to attain a speed up of more than 10,000X compared to HSPICE. This work also extends the leakage current estimation technique in Field Programmable Gate Arrays (FPGAs). A different version of the leakage estimator tool was developed and incorporated into the Versatile Place & Route CAD tool to enable leakage estimation of design after placement and routing. Leakage current is highly dependent on the steady state terminal voltage of the transistor, which depends on the logic state of the CMOS circuit as determined by the input pattern. Consequently, there exists a pattern that will produce the highest leakage current. This work considers all leakage sources together and tries to find an input pattern(s) that will maximize the composite leakage current made up of all three components. This work also analyzes leakage power in presence of dynamic power in a unique way. Current method of estimating total power is to sum dynamic power which is ½&#;CLVDD2f and sub-threshold leakage power. The dynamic power in this case is probabilistic and pattern independent. On the other hand sub-threshold leakage is pattern dependent. This makes the current method very inaccurate for calculating total power. In this work, it is shown that leakage current can vary by more than 8% in time in presence of switching current.
15

Adaptive Power Analog-to-Digital Interface for Digital Systems

Grimes, Todd S. January 2016 (has links)
No description available.
16

Low Power Merged LNA and Mixer Design for Medical Implant Communication Services

Jeong, Jihoon 02 April 2012 (has links)
The FCC allocated the spectrum of 402-405 MHz for MICS (Medical Implant Communication Services) applications in 1999. The regulations for MICS band apply to devices that support the diagnostic and/or therapeutic functions associated with implanted medical electronics. The implanted devices aid organs and control body functions of patients to support specific treatments, and monitor patients continuously so that necessary action can be taken in advance to avoid serious conditions. To enable to use MICS applications, several requirements must be satisfied. An implanted wireless device should have a small size, consume ultra-low power, and achieve the date rate of at least 200 kbps within 2 m distance. The major challenge is to realize ultra-low power devices. Thus the low-power design of the RF circuit is crucial for MICS applications as the power consumption of the wireless devices is mostly contributed by RF circuits. This thesis investigates low-power design of an LNA and a down-conversion mixer of a receiver for MICS applications. The key idea is to stack an LNA and a mixer, while the LNA operates in the normal super-threshold region and the mixer in the sub-threshold region. In addition, a gm-boosting technique with a capacitor cross-coupled at the LNA input stage is also adopted to achieve a low noise figure (NF) and high linearity, which is critical to the overall performance of the receiver. The mixer operating in the sub-threshold region significantly reduces power dissipation and relaxes the voltage headroom without sacrificing the LNA performance. The relaxed voltage headroom enables stack of the LNA and the mixer with a low supply voltage of 1.2 V. The proposed circuit is designed in 0.18 μm RF CMOS technology. The merged LNA and mixer consumes only 1.83 mW, and achieves 21.6 dB power gain. The NF of the block is 3.55 dB at 1 MHz IF, and the IIP3 is -6.08 dBm. / Master of Science
17

Exploration of Displacement Detection Mechanisms in MEMS Sensors

Thejas, * January 2015 (has links) (PDF)
MEMS Sensors are widely used for sensing inertial displacements. The displacements arising out of acceleration /Coriolis effect are typically in the range of 1 nm-1 m. This work investigates the realization of high resolution MEMS inertial sensors using novel displacement sensing mechanisms. Capacitance sensing ASIC is developed as part of conventional electronics interface with MEMS sensor under the conventional CMOS-MEMS integration strategy. The capacitance sense ASIC based on Continuous Time Voltage scheme with coherent and non-coherent demodulation is prototyped on AMS 0.35 m technology. The ASIC was tested to sense C = 3.125 fF over a base of 2 pF using on-chip built-in test capacitors. Dynamic performance of this ASIC was validated by interfacing with a DaCM MEMS accelerometer. 200milli-g of acceleration (equivalent to a C = 2.8 fF) over an input frequency of 20Hz is measurable using the developed ASIC. The observed sensitivity is 90mV/g. The ASIC has several programmable features such as variation in trim capacitance (3.125 fF-12.5 pF), bandwidth selection (500 Hz-20 kHz) and variable gain options (2-100). Capacitance detection, a dominant sensing principle in MEMs sensors, experiences inherent limitation due to the role of parasitics when the displacements of interest are below 5 nm range. The capacitive equivalence ( C) for the range of displacements of the order of 5 nm and below would vary in the range atto-to-zepto farad. Hence there is a need to explore alternative sensing schemes which preferably yield higher sensitivity (than those offered by the conventional integration schemes) and are based on the principle of built-in transduction to help overcome the influence of parasitics on sensitivity. In this regard, 3 non-conventional architectures are explored which fall under the direct integration classification namely: (a) Sub-threshold based sensing (b) Fringe field based sensing and (c) Tunneling current based sensing. a) In Sub-threshold based sensing, FET with a suspended gate is used for displacement sensing. The FET is biased in the sub-threshold region of operation. The exponential modulation of drain current for a change in displacement of 1 nm is evaluated using TCAD, and the in uence of initial air-gap variation on the sensitivity factor ( ID=ID) is brought out. For 1% change in air gap displacement (i.e., TGap/TGap, the gap variation resulting due to the inertial force / mass loading) nearly 1050% change in drain current( ID=ID) is observed (considering initial air gaps of the order 100 nm). This validates the high sensitivity offered by the device in this regime of operation. A comparison of sensitivity estimate using the capacitive equivalence model and TCAD simulated model for different initial air-gaps in a FD-SOI FET is brought out. The influence of FDSOI FET device parameters on sensitivity, namely the variation of TSi, TBox, NA and TGap are explored. CMOS compatibility and fabrication feasibility of this architecture was looked into by resorting to the post processing approach used for validating the sub-threshold bias concept. The IMD layers of the Bulk FETs fabricated through AMS 0.35 technology were etched using BHF and IPA mixture to result in a free standing metal (Al) layers acting as the suspended gate. The performance estimate is carried out considering specific Equivalent Gap Thickness (EGT) of 573 nm and 235 nm, to help overcome the role of coupled electrostatics in influencing the sensitivity metric. The sensitivity observed by biasing this post processed bulk FET in sub-threshold is 114% ( ID=ID change) for a 59% ( d/d change). The equivalent C in this case is 370 aF. b) In Fringe eld based sensing approach, a JunctionLess FET (JLFET) is used as a depletion mode device and an out-of-plane gate displacement would help modulate the device pinch-o voltage due to fringe field coupling. The resulting change in the gate fringe field due to this displacement modulates the drain current of the JunctionLess FET. The displacement induced fringe field change (relative to the FET channel) brings about a distinct shift in the ID-VG characteristics of the JLFET. For displacement d = 2 nm, the JLFET with a channel doping of ND = 8X1018cm 3 and a bias point of VG = -47.7 V, 98% enhancement in sensitivity is observed in 3D TCAD simulations. The equivalent C in this case is 29 zF. The role of ground-planes in the device operation is explored. c) In the tunneling current based sensing approach, the beams fabricated using the SOI-MUMPS process are FIB milled so as to create very ne air gaps of the order of nearly 85 nm. Under high electric fields of the order > 8 MV/cm, the lateral displacement based tunneling sensor offers enhanced change in sensitivity for an induced external force at a fixed DC bias. When integrated as an array with varying electrode overlap, this technique can track displacements over a wide range. With the initial beam overlap as 1.2 m, for a lateral displacement of 1.2 m, a 100% change in sensitivity ( ID=ID) is observed. The effect of fringe field can be completely neglected here unlike its capacitive beam equivalent.

Page generated in 0.0495 seconds