• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 14
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Utah Forest Dynamics Plot: Long-Term Ecological Monitoring and Theoretical Ecology in a High-Elevation Subalpine Environment

Furniss, Tucker J. 01 May 2016 (has links)
The Unified Neutral Theory of Biodiversity has been advanced as a universal theory for species coexistence in forests worldwide, but few studies have examined its relevance to high-elevation, stressful environments. I established the Utah Forest Dynamics Plot (UFDP) in a heterogeneous subalpine forest at 3,091 m elevation on the Colorado Plateau to examine three underlying assumptions of neutral theory (functional equivalence, ecological equivalence, and habitat generality) and one prediction (the species abundance distribution). The UFDP comprises 27,845 stems ≥1 cm diameter at breast height of 17 species, 10 genera, and 6 families over 13.6 ha. The neutral model was a poor fit to the observed species abundance distribution, but I did not find the alternative lognormal model to provide a better fit. Using spatial pattern analyses of tree data, topography, and soil type, I found some limited support for the neutral theory assumptions of functional and ecological equivalency, with notable exceptions. Populus tremuloides, Pinus flexilis, and Pinus longaeva were characterized by non-neutral recruitment processes, and Abies bifolia and Populus tremuloides exhibited asymmetric competitive and facilitative interactions. The assumption of habitat generality was strongly contradicted, with all ten abundant species in the UFDP having habitat preference. In this subalpine temperate forest, species diversity and community structure are influenced more by habitat heterogeneity, species differences, and niche selection, with neutral processes playing a lesser role.
22

Dépôt des nitrates atmosphériques sur les prairies subalpines du Lautaret / Atmospheric nitrate deposition on subalpine meadows of the Lautaret pass

Bourgeois, Ilann 08 December 2017 (has links)
L’accroissement des dépôts de nitrate atmosphérique (NO3-atm) sur les bassins versants d’altitude, limités en ressources, entraîne des changements nets de disponibilité d’azote. Ces apports modifient la diversité biologique (végétation, plantes), les processus des sols liés à l’azote et conduisent à l’eutrophisation des cours d’eau. A terme, l’impact sur les populations humaines se traduira par la perte d’importants services fournis par ces écosystèmes (alimentation en eau, qualité du fourrage, contrôle de l’érosion, biodiversité). Si les effets des dépôts de NO3-atm sur les bassins versants pauvres en azote sont maintenant bien documentés, il n’en reste pas moins à comprendre les processus régissant la rétention de NO3-atm dans les écosystèmes de montagne. Pour ce faire, la variabilité spatio-temporelle de la répartition du NO3-atm dans tous les compartiments subalpins est ici étudiée en utilisant un traceur multi-isotopique (17O, 18O, 15N) du NO3-. L’importante proportion de NO3-atm dans les cours d’eau de montagne, tout au long de l’année et plus particulièrement à la fonte des neiges, laisse à penser que les bassins versants sont cinétiquement saturés en azote. La composition isotopique du NO3- dans les eaux de surface illustre la transformation rapide de l’ammonium de la neige et confirme que la fonte des neiges est une période cruciale du cycle de l’azote dans les montagnes enneigées. La proportion de NO3-atm dans les sols varie, quant à elle, en fonction du type d’occupation des sols et des propriétés biotiques et abiotiques afférentes. Le suivi de la végétation a montré une forte teneur en NO3-atm dans les tissus, par assimilation racinaire et foliaire. Ces avancées scientifiques permettront, à terme, de mieux comprendre comment les dépôts de NO3-atm affectent l’environnement. / Increasing rates of atmospheric nitrate (NO3-atm) deposition in nutrients poor mountainous regions have led to critical changes in nitrogen (N) availability, with consequences on biodiversity (plants, microbes), soils N turnover, and water nutrients status. This will ultimately affect human populations through the loss of critical ecosystem services (e.g., provision of clean freshwater, erosion control, biodiversity). If the impacts of NO3-atm deposition to N-limited basins are now well documented, little is known about the processes driving NO3-atm retention in subalpine ecosystems. In this context, new tools are necessary to better understand the fate of NO3-atm in mountains and to predict the mid and long-term ecological consequences of increasing NO3-atm deposition. This work uses a high-resolution multi-isotopic technique combining 17O, 18O and 15N signatures of NO3- in the different subalpine compartments to understand the temporal and spatial evolution of NO3-atm partitioning in a subalpine watershed of the French Alps. Subalpine streams elevated year-round exports of NO3-atm suggest that the watersheds are kinetically N saturated, especially after snowmelt. The isotopic composition of NO3- in freshwaters also points at the rapid processing of snow ammonium, confirming that snowmelt is “hot moment” for the N cycle in seasonally snow-covered catchments. The monitoring of soils reveals varying NO3-atm proportions depending on the land management treatments and implied biotic and abiotic characteristics. Two dominant subalpine plants showed high proportions of NO3-atm in organs acquired by both root and foliar uptake. These scientific breakthroughs will ultimately lead to a better understanding of how NO3-atm deposition affects the environment.
23

Structure and regeneration of old-growth stands in the engelmann spruce - subalpine fir zone

Klinka, Karel January 1998 (has links)
Old-growth stands are important for management, conservation, wildlife, recreation, and maintaining biological diversity in forested landscapes. However, we are lacking the information needed to adequately identify and characterize old-growth stands. This is especially true for high elevation, interior forests. The characterization of stand structure and regeneration pattern will help in the development of site-specific guidelines for identifying old growth stands and restoring some of the old-growth characteristics in managed stands. This pamphlet presents a synopsis of a study investigating stand structure and regeneration of old-growth stands in the Moist Cold Engelmann Spruce - Subalpine Fir (ESSFmc) Subzone near Smithers, B.C. The three stands selected for the study were located on zonal sites, each in different watersheds, and the stands were established after fire. The criteria used for selection were: i) absence of lodgepole pine, ii) presence of advanced regeneration, and iii) abundant snags and coarse woody debris. These stands were presumed to represent the old-growth stage of stand development or the final (climax) stage of secondary succession.
24

Tree-Ring Chronologies from Nepal

Bhattacharyya, Amalava, LaMarche, Valmore C., Jr., Hughes, Malcolm K. January 1992 (has links)
Ten ring-width based chronologies from Nepal are described and the prospects for further dendroclimatic work there reviewed briefly. The initial results are encouraging, and more intensive subregional sampling is called for. All the cores examined showed distinct annual rings, and there was little evidence of double or missing rings, except juniper at some sites and in some Pinus roxburghii trees. Difficulty was encountered in dating Pinus wallichiana and Cupressus dumosa. Individual site chronologies of Cedros deodora, P. roxburghii and P. wallichiana were particularly promising, and of high elevation Abies spectabilis moderately so. Densitometric data are likely to be more useful for this species. The paucity of meteorological data in Nepal represents an obstacle to further dendroclimatic work there.
25

Histoire et dynamique de la forêt subalpine dans les Alpes du Sud (Briançonnais, Queyras) : approches pédoanthracologique et dendrochronologique

Saulnier, Melanie 07 November 2012 (has links)
Le Queyras est un territoire situé à la confluence d'influences climatiques océaniques continentales et méditerranéennes. Cette spécificité a permis le développement d'une biodiversité exceptionnelle mais particulièrement vulnérable aux changements globaux. Pour mieux comprendre leur dynamique actuelle, et afin de contribuer à élaborer des scenarii prédictifs de leur évolution basés sur leur dynamique passée, une approche paléoécologique pluridisciplinaire, associant pédoanthracologie et dendrochronologie, a été menée dans des forêts matures de mélèze (Larix decidua), de pin cembro (Pinus cembra) et de sapin (Abies alba). L'analyse des charbons de bois recueillis dans les sols de ces peuplements révèlent que la composition passée a pu être bien différente de l'actuelle. Le mélèze et le pin cembro sont présents dès la recolonisation postglaciaire (respectivement 8873-9014 cal. BP et 8702 – 9024 cal. BP). Les relations cernes-climat révèlent la sensibilité du pin cembro et du sapin aux conditions hydrologiques, confirmant le caractère xérique de ce massif. D'autre part, l'étude de la dynamique holocène des forêts subalpines et des variations de leur limite supérieure révèlent que les changements globaux semblent favoriser le mélèze. Alors que les résultats pédoanthracologiques montrent que le pin cembro et le mélèze se sont succédé à l'étage subalpin tout au long de l'Holocène, la dendrochronologie met en évidence les conséquences des changements globaux : le pin cembro devient de plus en plus sensible au réchauffement climatique tandis que le mélèze semble profiter des changements d'occupation du sol associés à une augmentation des températures. / The Queyras is a region located at the limit of oceanic, continental and Mediterranean climatic influences. This specificity led to a level of biodiversity exceptional but particularly sensitive to global changes. We used a pluridisciplinary paleocological approach by means of pedoanthracology and dendrochronology applied in old growth forests of Larch (Larix decidua), Stone pine (Pinus cembra) and Fir (Abies alba) to assess the present forest dynamics and to contribute to forecast the probable future forest dynamics. Wood charcoal analyses issued from natural soils sampled in these forests reveal past periods with vegetation composition sometimes quite different from the present one . Larch and Stone pine installed in the early Holocene (respectively 8873-9014 cal. BP and 8702 – 9024 cal. BP). Climate-growth relationship evidence the high sensitivity of both stone pine and fir to hydrological conditions which attests the dry conditions of this massif. In addition to that, the study of the upper limit dynamics of subalpine forests during the Holocene reveals that global changes seem to favour Larch. Whereas pedoanthracology results show permanent succession of Larch and Stone pine at the subalpine vegetation stage over the Holocene period, dendrochronology emphasizes the consequences of global changes: Stone pine gets more and more sensitive to climate warming while Larch seems to benefit of land use changes associated with temperature increase.
26

Seed dispersal mutualisms and plant regeneration in New Zealand alpine ecosystems

Young, Laura May January 2012 (has links)
The New Zealand alpine zone has many fleshy-fruited plant species, but now has a relatively depauperate animal fauna. The key question is, therefore, are native alpine plants still being dispersed, if so where to and by what? I first measured fruit removal rates among nine common species using animal-exclusion cages to compare natural fruit removal by all animals, and by lizards only. Over two years, mean percent of fruit removed by early winter ranged from 25–60% among species. Speed of fruit removal also varied depending on species. Secondly, I quantified which animals disperse (or predate) seeds of those fruits, into which habitats they deposit the seeds, and the relative importance of each animal species for dispersal, in two ways. A 2-year study using fixed-area transects to monitor faecal deposition showed that introduced mammals (especially possums, rabbits, hares, sheep, pigs and hedgehogs) were abundant and widespread through alpine habitat. Of the 25,537 faeces collected, a sub-sample of 2,338 was dissected. Most mammals dispersed most (> 90%) seeds intact. However, possums (numerically the important disperser) moved most seeds into mountain beech (Nothofagus solandri) forest, while rabbits, hares, and sheep dispersed seeds mainly into open grassland dominated by thick swards of exotic grasses (e.g. Agrostis capillaris and Anthoxanthum odoratum); all are less suitable microsites. Kea (Nestor notabilis), the largest and most mobile of only three remaining native alpine bird species, are potentially useful as a long-distance seed disperser, even though parrots are typically seed predators. I found that kea are numerically more important than all other birds combined, damage very few seeds, and are probably responsible for most dispersal of seeds between mountain ranges. Finally, I investigated the effects of seed deposition microsite (shady/high-light), pulp-removal (whole/cleaned), competition (soil dug/not-dug) and predation (caged/ not) on germination, growth and survival of eight subalpine plant species. There were strong positive effects of shady microsites for seed germination and seedling survival to 3.5 years for six of the eight species. Effects of other treatments were less important and varied among species and stages. Hence, both native birds and introduced mammals are dispersing alpine seeds, but the mammals often deposit seeds in habitats unsuitable for establishment. Any evaluation of the dispersal effectiveness of frugivores must consider their contribution towards the long-term success for plant recruitment through dispersal quantity and quality.
27

The Effect of In-Line Lakes on Dissolved Organic Matter Dynamics in Mountain Streams

Goodman, Keli J. 01 May 2010 (has links)
This research combines observation, experimentation, and modeling to evaluate the influence of lakes on dissolved organic matter (DOM) quantity, quality and export in subalpine watersheds of the Sawtooth Mountain Lake District, central Idaho. First, I conducted an empirical study of the hydrologic and biogeochemical controls on DOM dynamics in stream-lake fluvial networks. I hypothesized that lakes would decrease temporal variability (i.e., buffer) and alter the characteristics of DOM from inflow to outflow. I tested these hypotheses by evaluating DOM temporal patterns and measuring annual export in seven-paired lake inflows and outflows. I then evaluated how ultraviolet (UV) exposure affected DOM characteristics during snowmelt and baseflow, and how UV alters baseflow DOM bioavailability and nutrient limitation. Given that increased water residence time increases UV exposure, I hypothesized that lake outflow DOM would be more photorecalcitrant than DOM from lake inflows. I further hypothesized that UV exposure would increase DOM quality, heterotrophic processing, and nutrient demand. Results indicate that lakes can buffer stream temporal variability by acting as a DOM sink during snowmelt and a DOM source during baseflow. Lake outflow DOM photodegradation was similar to lake inflows during snowmelt (p=0.66). Conversely, outflow DOM was 2X more photorecalcitrant than inflow DOM during baseflow (ANOVA, p=0.03) and was strongly related to water residence time (WRT). During baseflow, light exposure increased inflow and outflow DOM bioavailability (p=0.059 and 0.024, respectively) and nutrient limitation (p=0.03 and 0.09, respectively). Combined, these results indicate that WRT in subalpine lakes strongly influences DOM temporal variability and DOM degradation and processing. Thus, lakes can provide temporal stability of DOM and potentially increase both carbon and nutrient uptake by heterotrophs in lake outflows. I then evaluated how global changes could alter hydrologic and nutrient dynamics in a subalpine lake. Model results indicate that the magnitude and timing of snowmelt runoff can have a substantial effect on water and nutrient exports. In phosphorus (P)-limited lakes, increases in inorganic N concentrations within and exported from lakes are likely to occur with increased temperatures and lake WRT. Increases in atmospheric N deposition will further enhance inorganic N exports in P-limited subalpine lakes.
28

Naturvärdesbedömning och hänglavsinventering i fjällnära barrskog : En jämförande studie mellan två likartade områden med olika påverkan av skogsbruk i Tärnaby, Västerbottens län / Natural values and occurrence of pendulous lichen in subalpine coniferous woodland : A comparing study between two similar areas affected differently by forestry

Ransgart, Emmy January 2021 (has links)
The aim of the study was to investigate natural values and the occurrence of pendulous lichens species in two areas located in subalpine coniferous woodland in Tärnaby, Västerbotten county in northern Sweden. The two areas have similar geology, hydrology and vegetation. Area A is affected by forestry, whilst area B isn’t. Forestry is one of the biggest threats to woodland species because it causes habitat fragmentation a loss of habitat. Pendulous lichens are most occurring in old growth forests where natural processes have been left undisturbed. Therefore, red-listed pendulous lichens are often used as a nature value indicator for identifying old-growth forests. In each study area, five sample areas was studied. In each sample area, a nature value assessment and an inventory of pendulous lichen species and red-listed pendulous lichen species was performed. In area A, three species of pendulous lichen where found, and five species were found in area B. In area B, two of the species found were Alectoria sarmentosa and Bryoria nadvornikiana, both listed as NT in the IUCN red list. In area A, no red listed species were found. Results also showed a higher natural value in the area not affected by forestry, area B, than in area A. The natural values and occurrence of pendulous lichen and red-listed pendulous lichen was higher in area B than in area A. The cause of the differences can’t be identified by this study, but the effect of forestry is probably one of the causes.
29

Plant-Soil Feedbacks and Subalpine Fir Facilitation in Aspen-Conifer Forests

Buck, Joshua R. 07 March 2012 (has links) (PDF)
This thesis includes two studies. The first study examined changes in soil characteristics as a result of prolonged conifer dominance in successional aspen-conifer forests. Changing disturbance patterns in aspen-conifer forests appear to be altering successional dynamics that favors conifer expansion in aspen forests. The primary objective of this paper was to identify how increasing conifer dominance that develops in later successional stages alters forest soil characteristics. Soil measurements were collected along a stand composition gradient: aspen dominated, aspen-conifer mix, conifer dominated and open meadow, which includes the range of conditions that exists through the stages of secondary succession in aspen-conifer forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than adjacent meadows, mixed or conifer stands. Soil moisture was significantly higher in aspen stands and meadows in early summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. The results indicate that soil resource availability and respiration peak within aspen dominated stands that are present during early succession and then decrease as conifer abundance increases along our stand composition gradient, representative of stand characteristics present in mid to late successional stages. Emerging evidence from other studies suggest that these observed changes in soil characteristics with increasing conifer dominance may have negative feedbacks on aspen growth and vigor. The second study examined the facilitation effect between aspen and subalpine fir establishment. In subalpine forests, conifer species are often found intermixed with broadleaf species. However, few if any studies have explored the existence and influence of facilitation between broadleaf tree species and conifers. We have observed the general establishment of subalpine fir seedlings at the base of aspen trees in a subalpine forest, indicating that a facilitative relationship may exist. To explore the potential facilitative relationship during secondary succession in subalpine forests, subalpine fir seeds were planted across a stand composition gradient (aspen dominated → mixed → conifer dominated stands) at six study sites in the Fishlake National Forest. Seeds were placed during the fall of 2010, at distances of 0 cm and 25 cm in each cardinal direction at the base of mature aspen and subalpine fir trees in each of the three stand types. Seeds were also planted within stand interspaces and in adjacent meadows. Seedling emergence was recorded at the beginning of the summer of 2011 and seedling mortality was recorded in October 2011. Soil moisture content was measured at the position that seeds were placed during the summers of 2009 and 2011. Aspen dominated stands had subalpine fir germination that was on average 11 times greater than mixed or conifer dominated stands. Germination was 2.3 fold greater at the base of aspen trees than fir trees and two fold greater at the base of aspen trees than interspaces. Seedling mortality was lower in aspen stands but was not significantly influenced by position relative to mature trees. Soil moisture was highest in aspen dominated stands, with better soil moisture conditions at the base of aspen trees and in interspaces compared to the base of fir trees. Few if any studies regarding conifer facilitation have provided evidence for facilitation at the germination life stage, rather they focus on seedling survival. However, our study illustrates a strong facilitative interaction in which both aspen dominated stands and aspen trees increase the likelihood of subalpine fir seedling establishment by drastically increasing rates of subalpine fir germination. Because of aspen's primary role in initiating secondary succession through post-disturbance sucker regeneration, and the subsequent dependence of conifers on aspen for establishment, aspen mortality via competition with conifers under longer fire cycles, droughts, or intensive ungulate browsing may result in a loss of aspen-conifer forest communities in some locales.
30

Environmental and Adaptive Buffers that Mediate the Response of Subalpine Ecosystems to Environmental Change

Conner, Lafe G. 01 June 2015 (has links)
This document reports the results of 4 studies of subalpine ecosystem ecology, describing ways that spatial heterogeneity in soils and plant communities mediate ecosystem responses to environmental change. Ecosystem responses to environmental change are also mediated by regional climate patterns and interannual variability in weather. In the first chapter we report the results of an experiment to test for the mediating effects of associational resistance in a forest community that experienced wide-spread beetle kill. We found that Engelmann spruce were more likely to survive a beetle outbreak when growing in low densities (host dilution) and not through other types of associational resistance that relate to higher tree-species richness or greater phylogenetic diversity of the forest community. In the second chapter we report the effects of early snowmelt on soil moisture in subalpine meadow and aspen communities. We found that soil organic matter, soil texture, and forest cover mediated the effects of early snowmelt and were more important drivers of growing-season soil moisture than was snow-free date. In the third chapter we report the effect of early snowmelt on growth and seed production of early-season and midsummer herbaceous species. We found that the primary effect that snowmelt timing had on plant growth was through its effect on species distribution. Changes in the timing of snowmelt had limited effect on the growth, flowering, and seed count of species after they were established. In the final chapter, we report the effect of early snowmelt on soil respiration, microbial biomass, dissolved organic carbon and soil organic carbon. We found that early snowmelt resulted in warmer soil temperatures compared to neighboring snow-cover plots, and that microbial biomass and soil respiration showed no signs of a snowmelt legacy effect during the growing season. Soil organic carbon in rapid and slow-turnover pools was affected more by plant community than by snowmelt timing, and the primary drivers of soil respiration during the snow-free period were first soil organic matter and second soil temperature. Taken together, this dissertation reports our findings that subalpine ecosystems are resilient to environmental change in part because organisms in these systems are adapted to environmental conditions that are highly variable between sites, seasons, and years.

Page generated in 0.0434 seconds