• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 109
  • 19
  • 16
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 333
  • 96
  • 91
  • 83
  • 72
  • 70
  • 70
  • 41
  • 40
  • 34
  • 32
  • 26
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analyse tectonique de la surface des modèles de convection mantellique / Tectonic analysis of mantle convection models

Mallard, Claire 25 August 2017 (has links)
La théorie de la tectonique des plaques permet de décrire les mouvements de premier ordre qui opèrent à la surface de la Terre. S'il est acquis que la convection dans le manteau terrestre en est le moteur, les liens entre les phénomènes profonds et les caractéristiques tectoniques de la surface restent largement méconnus. Jusqu'à très récemment, les modèles de convection du manteau terrestre ne produisaient pas de tectonique de surface pouvant être comparée à celle de la Terre. Récemment, des modèles globaux de convection qui reproduisent une tectonique de surface comparable à la Terre au premier ordre ont été mis au point. Ces modèles produisent des courants mantelliques ascendants et descendants de grande échelle et des déformations localisées en surface dans les zones de divergence et les zones de convergence. Ils génèrent une expansion des fonds océaniques de manière auto-cohérente proche de celle reconstruite pour les 200 derniers millions d'années de l'histoire de la Terre et une dérive de continents similaire à celle observée grâce au paléomagnétisme. Cette thèse s'inscrit parmi les premières tentatives d'utilisation de modèles de convection sphériques auto-organisés à des fins de compréhension de la tectonique de surface. La tectonique produite dans ce type de modèles de convection sera caractérisée finement à travers l'étude des limites de plaques, de leur agencement et de leurs vitesses de déplacement. L'objectif est de pouvoir comparer qualitativement et quantitativement les résultats des calculs de convection avec les reconstructions des mouvements de la surface terrestre grâce à la tectonique des plaques et aux observations de terrain. Dans cette optique, les limites tectoniques ont été définies à la main dans un premier temps afin de comprendre la physique qui gouverne l'agencement caractéristique des plaques tectoniques terrestres. En effet, celle-ci est composée de sept grandes plaques et plusieurs petites dont la répartition statistique indique deux processus de mise en place distincts. Nous avons déterminé les processus responsables de la mise en place de l'agencement caractéristique des plaques tectoniques en surface en faisant varier la résistance de la lithosphère. Plus la lithosphère est résistante, plus la longueur totale et la courbure des zones de subduction diminue à la surface des modèles. Cela s'accompagne également d'une diminution du nombre de petites plaques. En étudiant la fragmentation au niveau des jonctions triples, nous avons montré que les petites plaques étaient associées aux géométries courbées des fosses océaniques. En revanche, les grandes plaques sont contrôlées par les grandes longueurs d'onde de la convection mantellique. Ces deux processus impliquent deux temps de réorganisation, c'est-à-dire l'apparition et la disparition d'une plaque plongeante dans le manteau terrestre (environ 100 millions d'années) pour les grandes plaques, alors que l'échelle de temps de réorganisation des petites plaques dépend des mouvements des fosses et est ainsi plus rapide d'un ordre de grandeur. Afin d'effectuer des analyses quantitatives rapides, des méthodes d'analyse automatique de la surface et de l'intérieur des modèles ont été développées. La première technique concerne la détection automatique des plaques tectoniques à la surface des modèles (ADOPT). ADOPT est un outil de détection basé sur une technique de segmentation d'images utilisée pour détecter des bassins versants. Les champs à la surface des modèles sont transformés en reliefs, soit directement, soit après un processus de filtrage. Cette détection permet d'obtenir des polygones de plaques comparable aux analyses réalisées à la main. Une autre technique de détection a été mise au point pour étudier les panaches mantelliques [etc...] / Plate tectonics theory describes first order surface motions at the surface of the Earth. Although it is agreed upon that convection in the mantle drives the plates, the relationships between deep dynamics and surface tectonics are still largely unknown. Until recently, mantle convection models could not produce surface tectonics that could be compared to that of the Earth. New global models are able to form large-scale ascending and descending mantle currents, as well as narrow regions of localized deformation at the surface where convergence and divergence occur. These models selfconsistently generate an expansion of the oceanic floor similar to that of the last 200 million years on Earth, and continental drift similar to what can be reconstructed with palaeomagnetism. This Ph.D. thesis constitutes one of the first attempts to use self-organised, spherical convection models in order to better understand surface tectonics. Here, the tectonics produced by the models is finely charaterized through the study of plate boundaries, their organisation and their velocities. The goal is to be able to compare qualitatively and quantitatively the results of convection computations with surface motions, as reconstructed using the rules of plate tectonics and field observations. Plate boundaries emerging from the models were first traced and analyzed by hand so as to understand the physics that govern the typical organization of the tectonics plates on Earth. It is characterised by seven large plates and several smaller ones, following a statistical distribution that suggests that two distinct physical processes control the plates’ layout. We have determined the processes responsible for this distribution while varying the strength of the lithosphere (the yield stress). In our models, the stronger the lithosphere, the greater the total subduction length and their curvature, and the fewer the small plates. By studying surface fragmentation with triple junctions, we showed that the formation of small plates is associated with oceanic trench curvature. Large plates, however, are controlled by the long wavelengths of the convection cells. These two processes involve two different reorganisation times, controlled either by the accretion and the subduction of the large plates (about 100 Myrs), or by trench motions for the smaller plates. In order to improve the efficiency of our analysis, we have developed automated methods to study the surface and the interior of the models. The first technique is about detecting the tectonic plates automatically at the surface of the models. It is called ADOPT. It is a tool based on image segmentation technique to detect the watersheds. The surface fields of the convection models are converted into a relief field, either directly or using a distance method. This automatic detection allows to obtain plates polygons similar to the hand analysis. Another technique of detection has been developed to study mantle plumes. These analyzes were used to determine the driving forces behind the plates layout, to quantify the timing of reorganizations and to evaluate the implication of the models rheology on the surface distribution. These new analytical tools and the constant evolution of the quality of mantle convection models allow us to improve our understanding of the link between mantle dynamics and surface tectonics, but also to target necessary improvements in the convection models used
62

Glissements sismiques et asismiques : le cas du Japon / Seismic and aseismic slip : the Japanese subduction zone

Gardonio, Blandine 02 March 2017 (has links)
L'existence de glissements lents a été observé pour la première fois en Californie, sur une portion de la faille de San Andreas (Steinbrugge et al., 1960,Tocher 1960). Ils ont ensuite été détéctés dans les années 90s avec l'avènement des GPS. Les interactions entre glissement lents, ou glissements asismiques (qui n'émettent pas d'ondes élastiques) et les glissements sismiques est cependant mal connue.Pourtant, cette question est fondamentale puisque des glissements lents ont été observés avant plusieurs séismes.Par exemple, l’installation d’un glissement lent avant le séisme d’Izmit de 1999 en Turquie a été mise en évidence grâce à l’analyse de signaux répétitifs (Bouchon et al., 2011). De même, en étudiant le comportement des séismes répétitifs avant le méga-séisme de Tohoku de 2011, deux séquences de glissement lent en direction du point d’initiation ont été observées (Kato et al., 2012). D’autres glissements lents précédents des séismes de grandes ampleurs ont été reportés, notamment au Mexique, avant le séisme de Papanoa (Radiguet et al., 2016) de magnitude 7.3 et au Chili, avant le séisme d’Iquique de 2014 de magnitude 8.2 (Ruiz et al., 2014).L'objectif de ce travail de thèse est de mieux caractériser les interactions qui existent entre glissements sismiques et asismiques dans une zone de subduction très largement instrumentée: le Japon.La très grande densité des réseaux Japonais (sismique courte et longue période, GPS) autorise des seuils de détection des glissements sismiques ou lents très bas, et permet d'utiliser des méthodes de réseaux afin de maximiser le rapport signal sur bruit. La recherche d'épisodes de déformation lente est basée sur plusieurs types d'observables et de méthodes, et est complétée par l'analyse des changements de taux de sismicité accompagnant ces épisodes. Cette thèse vise ainsi à mieux comprendre comment du glissement lent peut -ou non- accélérer l'occurrence de grands séismes, et les conditions requises pour se faire. / Transient aseismic slip events (that do not emit elastic waves) were first discovered on the San Andreas fault in central California in 1960 (Steinbrugge et al., 1960, Tocher 1960) and were later confirmed by the development and installation of GPS stations. Aseismic slip can occur on continental faults as well as on subduction zones. However, the interactions between aseismic and seismic slips are not fully captured yet. Understanding the mechanisms at stake on fault planes is fundamental since several large earthquakes were preceded by aseismic slip episodes.For example, the setting of a slow slip event before the 1999 Izmit earthquake in Turkey was evidenced by the observation of repeating signals at one station (Bouchon et al., 2011). Also, by studying repeating earthquakes before the 2011 Tohoku earthquake, two slow slip episodes that migrated towards the rupture intitiation were observed (Kato et al., 2012). Other transient slips preceding large earthquakes occurred, including in Mexico, before the M7.3 Papanoa earthquake (Radiguet et al., 2016) and in Chile, before the 2014 Iquique earthquake (Ruiz et al., 2014).The aim of this thesis is to better characterize the interactions between seismic and aseismic slip that can occur in a subduction zone largely instrumented: Japan.The very high density of the japanese monitoring networks(seismic networks, both at short and long periods, and GPS network), allows the detection ofseismic and aseismic slip events with low intensity / size, and is amenable to the use of arraymethods to improve the signal-to-noise ratio. The search for episodes of transient deformation will be based on several observables andtechniques, and is complemented by the analysis of the changes in earthquake rates concomittent to these episodes. This work thus gives new clues on how aseismic deformation can -or not- accelerate the occurrence of strong earthquakes, and on what are the conditions (tectonic, dynamic) for this to happen.
63

Variations temporelles et spatiales des paramètres du mouvement fort du terrain de séismes de subduction / Time and Space Variation of Strong Motions Parameters for Subduction Interface Earthquakes

Pina Valdes, Jesus Vladimir 25 September 2017 (has links)
Les mouvements forts du sol générés par les séismes peuvent être reliés aux caractéristiques de la source sismique (chute de contrainte, vitesse de rupture, etc.), et aux conditions frictionnelles des failles. Ces caractéristiques sont généralement étudiées via l’analyse des enregistrements accélérométriques des grands séismes à basses fréquences (≤ 1 Hz). L'amélioration des réseaux accélérométriques a permis l’enregistrement de nombreux séismes de magnitudes faibles et modérées (Mw ≤ 6,0). Ces enregistrements contiennent des informations dans la bande de hautes fréquences (1 Hz - 50 Hz), qui ne peuvent pas être exploitées avec les méthodes sismologiques classiques.Pour exploiter ces données de mouvements forts des séismes de faible intensité dans l’objectif d’étudier étudier les conditions frictionnelles de l'interface de subduction, nous explorons deux méthodes pour comparer le contenu fréquentiel des séismes: la première basée sur les rapports spectraux et la deuxième basée sur les équations de prédiction du mouvement du terrain (GMPE). Ces méthodes ont été utilisées pour étudier la variabilité spatiale et temporelle du contenu fréquentiel des séismes rompant l'interface de subduction au nord du Chili et au Japon. Leurs avantages et limitations respectifs ont été analysés. Ces comparaisons méthodologiques nous ont a permis de confronter et de valider les résultats, et ainsi de proposer une nouvelle méthodologie fiable basée sur l'analyse des résidus de GMPE pour analyser le contenu fréquentiel des séismes.L'analyse des résultats obtenus a montré une dépendance avec la profondeur du contenu en fréquence des séismes de l’interface de subduction, concordant avec les observations de grandes ruptures de subduction [Lay et al., 2012]. En même temps, des variations du contenu fréquentiel des séismes ont été détectées le long de la fosse de subduction, ce qui nous a conduit à décrire une segmentation latérale de l'interface de subduction. Cette segmentation a été comparée avec la distribution spatiale de la sismicité, à la géométrie de l'interface de subduction et à ses conditions de glissement. Finalement, avant le séisme d’Iquique de 2014 (Mw 8.1) au nord du Chili, nous avons détecté une évolution temporelle du contenu en fréquence des séismes associée à l’occurrence d'un glissement lent précurseur au choc principal. / The strong ground motions generated by earthquakes can be related to the characteristics of the earthquakes source (stress drop, rupture velocity etc..), and therefore to the frictional conditions of the faults. These characteristics are usually studied by analyzing the low frequency band (≤ 1Hz) of the strong motion records of large earthquakes. The improvement of strong motion networks has generated large datasets of records of moderate and low magnitude earthquakes (Mw ≤ 6.0). These records contain informations in the high frequency band (1 Hz – 50 Hz), which cannot be exploited using classical seismological methods.In order exploit the strong motion records of low magnitude earthquakes to study the subduction interface’s frictional conditions, we explore two methods for comparing the earthquakes frequency content: the first one based on spectral ratios, and the second one based on the Ground Motion Prediction Equations (GMPEs). These methods have been used to investigate the spatial and temporal variability of the frequency content of subduction interface earthquakes in North Chile and Japan. Their respective benefits and limitations have been analyzed. These methodological comparisons allowed us to cross compare and validate the results, and to propose a new, reliable methodology based on the analysis of GMPEs residuals to compare the earthquakes frequency content.The analysis of the results showed a depth dependency of the frequency content of subduction earthquakes in agreement with the one derived from large megathrust ruptures [Lay et al., 2012]. Additionally, variations of the earthquake frequency content along trench have been detected, which may drive to a lateral segmentation of the subduction interface. This segmentation has been compared to the spatial distribution of the seismicity, the geometry of the subduction interface and its slippage conditions. Finally, before the occurrence of 2014 Iquique Earthquake Mw 8.1 in North Chile, a temporal evolution of the frequency content of the foreshocks has been detected, associated to a precursory slow slip of the subduction interface.
64

Evolution pétrologique et déformation des semelles métamorphiques des ophiolites : mécanismes d'accrétion et couplage à l'interface des plaques lors de l'initiation de la subduction / Petrological and deformation evolution of metamorphic soles beneath ophiolites : mechanism of accretion and coupling at the plate interface during subduction initiation

Soret, Mathieu 13 January 2017 (has links)
Les semelles métamorphiques sont des unités d’origine océanique (≤ 500 m d’épaisseur) situées à la base des grandes ophiolites obductées (≤ 20 km d’épaisseur). Ces unités sont caractérisées par un gradient métamorphique inverse, où les conditions de pression (P) et de température (T) de cristallisation augmentent de la base vers le contact avec l’ophiolite sus-jacente : depuis 500±100˚C et 0.5±0.2 GPa jusqu'à 800±100˚C et 1.0±0.2 GPa. Formées et exhumées au cours des 2 Ma suivant l’initiation des subductions océaniques, les semelles sont des témoins directs de leur dynamique précoce. Les assemblages minéralogiques qu’elles portent et leur déformation fournissent des contraintes majeures, et rares, sur l’évolution de la structure thermique et sur le comportement mécanique de l’interface de subduction naissante. Au terme d'une étude pétrologique, (micro-) structurale et expérimentale sur les amphibolites naturelles de la semelle de Semail (Oman, UAE) et synthétisées en laboratoire, nous proposons un modèle où la semelle métamorphique résulte d’épisodes multiples d’accrétion d’unités homogènes en P–T (donc sans gradient métamorphique) au cours des premières étapes de subduction océanique. L’écaillage subséquent résulte de changements majeurs dans la distribution de la déformation, du fait des variations des propriétés mécaniques des roches à l’interface de subduction lors de son équilibration thermique et de l’augmentation au cours du temps de la proportion de sédiments entrant en subduction. Ce modèle rend compte d’une grande complexité thermique et mécanique à l’interface de subduction, encore insuffisamment examinée dans les études numériques actuelles. / Metamorphic soles are m to ~500 m thick tectonic slices welded beneath most large-scale ophiolites (usually ≤ 20 km thick). They typically show a steep inverted metamorphic structure where the pressure (P) and temperature (T) conditions of crystallization increase upward, from the base of the sole (500±100ºC at 0.5±0.2 GPa) to the contact with the overlying peridotite (800±100ºC at 1.0±0.2 GPa). Soles are interpreted as a result of heat transfer from the incipient mantle wedge toward the nascent slab during the first My of intra-oceanic subduction. Metamorphic soles are therefore direct witnesses of petrological processes during early subduction. Their mineralogical assemblage and deformation pattern provide major constraints on the evolution of the thermal structure, on the migration of fluids and on the effective rheology along the nascent slab interface. We present a detailed petrological, (micro-)structural and experimental study, with refined P–T estimates obtained with pseudosection modelling and EBSD measurements, on the garnet-bearing and garnet-free (natural and synthetized) amphibolite. We suggest a new tectonic–petrological model for the formation of metamorphic soles below ophiolites, which involves the stacking of several homogeneous slivers (without any T gradient) of oceanic crust to form the present-day structure of the sole. These successive thrusts are the result of rheological contrasts between the slab material and the peridotites of the upper plate as the plate interface progressively cools. This model outlines the thermal and mechanical complexity of the early subduction dynamics, and highlights the need for more refined numerical modelling studies.
65

Évolution thermo-mécanique des systèmes de subduction-collision / The thermo-mechanical evolution of the subduction-collision systems

Regorda, Alessandro 05 April 2017 (has links)
La finalité de ce travail est de développer un modèle thermomécanique 2D pour analyser en détails les effets de la dissipation visqueuse et de l'hydratation du coin de manteau sur l’état thermique et la dynamique dans les zones de subduction. L’état thermique et la dynamique résultant des modèles prenant en compte la dissipation visqueuse et/ou l'hydratation du manteau sont comparés aux modèles ne les prenant pas en compte (Marotta and Spalla, 2007), afin d’analyser leurs effets sur la viscosité et sur la vitesse de déformation. Notre nouveau modèle démontre l’activation de la convection du manteau à courte longueur d’onde en fonction de l'hydratation et de la serpentinisation du coin de manteau. Il en résulte un recyclage des croûtes continentales et océaniques subduites. En outre, les effets de la vitesse de subduction sur l’ampleur de la région hydratée ont été analysés. Les évolutions des conditions P-T des marqueurs de crustaux et l'état thermique enregistré dans les différentes portions du complexe de subduction sont utilisés pour avoir une meilleure compréhension de la distribution et de l'évolution, dans le temps et dans l'espace, de conditions métamorphiques caractérisées par des rapports P/T contrastés. Une fois ces modèles établis, les évolutions P-T prédites par les modèles sont comparées aux données métamorphiques naturelles observées dans la chaine varisque, plus particulièrement dans les Alpes et le Massif Central français. Afin de prendre en compte l’exhumation de croûte subduite jusqu’aux niveaux les plus superficiels, le modèle prend en compte le rôle de l'atmosphère et donc des mécanisme d’érosion et de sédimentation. / The aim of this work was to develop a 2D thermo-mechanical model to analyse in detail the effects of the shear heating and mantle wedge hydration on the thermal state and dynamics of an ocean/continent subduction system. The thermal setting and dynamics that result from models with shear heating and/or mantle hydration are directly compared to a model that does not account for either (Marotta and Spalla, 2007) to analyse their effects on both the strain rate and the viscosity. The new model show the activation of short-wavelength mantle convection related to the hydration and the serpentinisation of the mantle wedge, with the consequent recycling of oceanic and continental subducted material. The effects of the subduction velocities on the size of the hydrated area are also analysed, andpredictions of the pressure-temperature evolutions of crustal markers and the thermal field, which affect different portions of subduction systems, are used to infer the thermal regimes that affect the models. Similarly, the model can help to understand extensively both the distribution and the evolution, in time and space, of metamorphic conditions characterised by contrasting P/T ratios in subduction systems. In a second phase, P-T predicted by the model has been compared with natural P max -T estimates related to the Variscan metamorphism, from both the present domains of the Alps and from the French Central Massif. However, the model did not allow to compare simulated P-T paths with successive metamorphic stages recorded and preserved by the rocks during their metamorphic evolution, because of the lack of exhumation of subducted material up to the shallowest portion of the crust.
66

Perméabilité et transport des fluides dans les zones de subduction / Permeability and fluid transport in subduction zones

Pilorgé, Hélène 07 July 2017 (has links)
Dans les zones de subduction, de nombreux indices attestent la circulation de fluides au-dessus de la plaque plongeante et dans le coin de manteau. L'interaction de péridotites avec des fluides aqueux issus de la déshydratation de la plaque plongeante favorise la formation de serpentinites à antigorite. Les interactions fluides-roche se font sous plusieurs formes : diffusion à l'état solide, percolation aux joints de grains et pression-solution. Afin d'étudier ces différentes interactions dans les conditions du coin de manteau, de l'antigorite et de l'eau ont été placées à haute pression (1.5-3.0 GPa) et haute température (315-540°C) dans une presse Belt ou une cellule à enclumes de diamant. De l'eau D2O a permis de suivre les processus d'inter-diffusion D/H dans l'antigorite et d'identifier les chemins de circulation de fluides et des traceurs de nickel ont été utilisés pour imager les recristallisations. L'analyse de monocristaux par spectroscopie Raman et nano-SIMS a permis de déterminer une loi d'inter-diffusion D/H pour l'antigorite : DD/H (m2/s) = 7.09 x 10-3 x exp(-202(-33/+70) (kJ/mol) /RT). La déformation de l'échantillon est localisées dans des zones de cisaillement ; elle augmente la porosité (jusqu'à 10 fractures/µm) et favorise les interactions fluides-roche. Des textures d'alignement de pores ont été identifiées comme des chemins actifs de circulation de fluides par la comparaison des volumes d'interaction fluides-roche et d'images MEB à haute résolution. Les recristallisations riches en nickel ont été étudiées par analyse EDX et imagerie en électrons rétrodiffusés. Les vitesses de cristallisation augmentent avec la température et la pression / In subduction zones many evidences confirm the circulation of fluids above the subducting slab and in the mantle wedge. The interaction of peridotites and water coming from the dehydration of the subducting slab favors the formation of antigorite serpentinites. Fluid-rock interactions include several processes: solid-state diffusion, percolation at grain boundaries and pressure-solution. In order to study the various interaction processes at the mantle wedge conditions, antigorite and water were interacted at high pressure (1.5-3.0 GPa) and high temperature (315-540°C) in a belt apparatus or in a diamond anvil cell. D2O-water was used as a tracer of D/H inter-diffusion processes in antigorite and in order to image circulation paths for aqueous fluids, and nickel tracers were used to image the recrystallizations. The analyses of single-crystals with a Raman spectrometer and nano-SIMS lead to a D/H inter-diffusion law in antigorite: DD/H (m2/s) = 7.09 x 10-3 x exp(-202(-33/+70) (kJ/mol) /RT). The sample deformation, due to the non-hydrostatic pressure in the belt apparatus, is localized in shear zones; it raises the porosity (up to 10 fractures/µm) and enhances the fluid-rock interactions. Textures of pore alignments were identify as active circulation paths for fluids from the comparison of maps of fluid-rock interactions and high resolution SEM images. Nickel-rich recrystallizations were studied with EDX analyses and backscattered electron imaging. Crystallization velocities raises with increasing temperature and pressure
67

Imagerie microsismique d’une asperité sismologique dans la zone de subduction Équatorienne / Microseismicity around an asperity in the Ecuadorian subduction zone

Segovia Reyes, Mónica 25 November 2016 (has links)
La zone de subduction centrale en Equateur est caractérisée par un patch fortement couplé, pas de grands séismes connus et de fréquents essaims sismiques, dont certains associés à des épisodes de glissements lents (SSE). Les hypocentres déterminés sur un réseau temporaire dense onshore-offshore image la sismicité de fond et plusieurs essaims (01/2013), synchrones d’un SSE (Mw´ 6.3). Une sismicité permanente se produit à 20-30 km de profondeur, proche et sous la zone de contact interplaque (ZCI), bordant la partie profonde de la zone couplée. Les essaims superficiels (10 km) ont lieu sur des zones de failles crustales de la plaque plongeante (ZFC-Nazca), inverses, sub-verticales et qui bordent un massif océanique en subduction. Le SSE 2012-2013 est un événement composite se développant sur 2 patchs distincts. Le premier patch (P1), plus petit, se localise sur une partie peu couplée de la ZCI et le second (P2), plus superficiel, sur une zone fortement bloquée (>70%). Depuis le 25/11 et durant ~1,5 mois, sans sismicité, P1 se déverrouille progressivement, indiqué par un glissement discontinu, lent et faible. Le 13/01, l'accélération soudaine du glissement sur P1 réactive une ZFC-Nazca (1er essaim), située immédiatement updip P1 et downdip P2, ce qui favorise le début d´un glissement rapide, fort et continu sur P2 (et sur P1). Nous proposons que les fluides, expulsés par l'activité sur la ZFC-Nazca et injectés au niveau de la ZCI, contribuent à modifier le comportement de stabilité des matériaux, favorisant ce SSE inattendu sur une zone fortement bloquée. Environ 80% du moment asismique total sont libérés sur P2 en une semaine, concomitant d´essaims sur différentes ZFC-Nazca / The central subduction zone of Ecuador is characterized by a highly coupled patch, no known large earthquakes and frequent seismic swarms, some of them associated to slow slip events (SSE). The earthquakes recorded on a temporal onshore-offshore network show an unprecedented image of the background seismicity and of several intense swarms in early 2013, concomitant of a SSE (6.3 Mw). The 20-30 km deep permanent seismic clusters develop near and below the interface contact zone (ICZ), contouring the downdip limit of the locked area. The shallower swarms (10 km depth) occur on sub-vertical inverse crustal fault zones of the Nazca plate that seem to bound a known oceanic massive in subduction. The 2012-2013 SSE is a composite event developing on 2 distinct patches. The first and smaller patch (P1) is sited on an intermediate coupled portion of the ICZ than the shallower second patch (P2) that lies on a highly locked area (> 70%). Since 2012 Nov. 25 and during ~1.5 month, without seismicity, P1 progressively unlocks as revealed by the slow, low and intermittent slip. On 2013 Jan. 16, the sudden slip acceleration on P1 activates a Nazca crustal fault zone (first swarm) located immediately updip P1 and downdip P2, which in turn favors the onset of the faster, higher and continuous slip on P2 (and on P1). We propose that the fluids expelled by the fault activity and injected above, within the ICZ, contribute to modify the material stability behavior and favor the unexpected SSE on a highly locked area. About 80% of the total aseismic moment is released during one week on P2, at the same time than intense seismic swarms on distinct Nazca crustal fault zones
68

Morphostructural evolution of active margin basins: the example of the Hawke Bay forearc basin, New Zealand.

Paquet, Fabien January 2007 (has links)
Topography growth and sediment fluxes in active subduction margin settings are poorly understood. Geological record is often scarce or hardly accessible as a result of intensive deformation. The Hawke Bay forearc basin of the Hikurangi margin in New Zealand is well suited for studying morphstructural evolution. It is well preserved, partly emerged and affected by active tectonic deformation during Pleistocene stage for which we have well dated series and well-known climate and eustasy. The multidisciplinary approach, integrating offshore and onshore seismic interpretations, well and core data, geological mapping and sedimentological sections, results in the establishment of a detailed stratigraphic scheme for the last 1.1 Ma forearc basin fill. The stratigraphy shows a complex stack of 11 eustasy-driven depositional sequences of 20, 40 and 100 ka periodicity. These sequences are preserved in sub-basins that are bounded by active thrust structures. Each sequence is characterized by important changes of the paleoenvironment that evolves between the two extremes of the glacial maximum and the interglacial optimum. Thus, the Hawke Bay forearc domain shows segmentation in sub-basins separated by tectonic ridges during sea level lows that become submerged during sea level highs. Over 100 ka timescale, deformation along active structures together with isostasy are responsible of a progressive migration of sequence depocenters towards the arc within the sub-basins. Calculation of sediment volumes preserved for each of the 11 sequences allows the estimation of the sediment fluxes that transit throughout the forearc domain during the last 1.1 Ma. Fluxes vary from c. 3 to c. 6 Mt.a⁻¹. These long-term variations with 100 ka to 1 Ma timescale ranges are attributed to changes in the forearc domain tectonic configuration (strain rates and active structure distribution). They reflect the ability of sub-basin to retain sediments. Short-term variations of fluxes (<100 ka) observed within the last 150 ka are correlated to drastic Pleistocene climate changes that modified erosion rates in the drainage area. This implies a high sensitiveness and reactivity of the upstream area to environmental changes in terms of erosion and sediment transport. Such behaviour of the drainage basin is also illustrated by the important increase of sediment fluxes since the European settlement during the 18th century and the following deforestation.
69

Seismic Anisotropy, Intermediate-Depth Earthquakes, and Mantle Flow in the Chile-Argentina Flat-Slab Subduction Zone

Anderson, Megan Louise January 2005 (has links)
Subduction zone structure and kinematics are topics of ongoing investigation with broadband seismology. Recent advances in experimental observations of mantle materials at high temperatures and pressure, expanded broadband seismic datasets, new seismic analysis methods, and advances in computational modeling are ever increasing our capacity for synthesized investigation of tectonic environments. With the resulting expanded capability for interpretation, the geophysical community is in a position to build more refined and detailed models of subduction zone processes. This study takes part in these advances by refining structural observations of the subducting slab and making new observations of mantle kinematics in a part of the South American subduction zone in Chile and Argentina (between 30 degrees and 36 degrees S). First, I investigate the utility of multiple-event earthquake relocation algorithms for accurate locations using a regional dataset for seismic events in Nevada and then I apply the observations resulting from this study in the determination of new Wadati-Benioff zone seismicity hypocenter locations for the study area in South America. I interpolate new contours of the top of the subducting slab from this seismicity that, when interpreted with focal mechanism solutions for these events, are consistent with its deformation due to slab pull. I use shear wave splitting of teleseismic earthquake waves and s-waves from local earthquakes to characterize mantle strain within the mantle wedge and within and below the subducting slab. From these observations, I conclude that mantle flow in subduction zones is quite responsive to local changes in slab geometry as well as the thermal state of and shear stresses in the mantle wedge.
70

Crustal and Upper Mantle Structure of the Anatolian Plate: Imaging the Effects of Subduction Termination and Continental Collision with Seismic Techniques

Delph, Jonathan, Delph, Jonathan January 2016 (has links)
The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and eventual detachment of the downgoing oceanic lithosphere attached to the Arabian Plate. After detachment, high rates of exhumation in the overriding plate are recorded due to the removal of the oceanic lithosphere and accompanying rebound of the Arabian continental lithosphere. In the third study, we image a transitional stage between the complete slab breakoff of the second study and the continuous subduction slab of the first study. We interpret that trench-perpendicular volcanism and ~2 km of uplift of flat-lying carbonate rocks along the southern margin of Turkey can be attributed to the rollback and ongoing segmentation of the downgoing slab as attenuated continental material is introduced into the subduction zone. Combining these three studies allows us to understand the terminal processes of a long-lived subduction zone as continental material is introduced.

Page generated in 0.069 seconds