• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 5
  • Tagged with
  • 15
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structures quantiques de certaines sous-variétés lagrangiennes non-monotones

Ngô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this relative setting they deformed the boundary operator of the Morse complex as well as the intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product. The main goal of this dissertation is to generalize their construction to a larger class of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds, i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some choices, but in a way irrelevant for the applications we have in mind. In the almost monotone case, we are mainly interested in displaceability, uniruling and ernegy estimates for hamiltonian diffeomorphsims. Finally, we end by an application, that combine the two approaches, concerning the dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
12

Détermination sous-différentielle, propriété Radon-Nikodym de faces, et structure différentielle des ensembles prox-réguliers / Subdifferential determination, Faces Radon-Nikodym property, and differential structure of prox-regular sets

Salas Videla, David 14 December 2016 (has links)
Ce travail est divisé en deux parties: Dans la première partie, on présente un résultat d'intégration dans les espaces localement convexes valable pour une longe classe des fonctions non-convexes. Cela nous permet de récupérer l'enveloppe convexe fermée d'une fonction à partir du sous-différentiel convexe de cette fonction. Motivé par ce résultat, on introduit la classe des espaces ``Subdifferential Dense Primal Determined'' (SDPD). Ces espaces jouissent des conditions nécessaires permettant d'appliquer le résultat ci-dessus. On donne aussi une interprétation géométrique de ces espaces, appelée la Propriété Radon-Nikod'ym de Faces (FRNP). Dans la seconde partie, on étudie dans le contexte d'espaces d'Hilbert, la relation entre la lissité de la frontière d'un ensemble prox-régulier et la lissité de sa projection métrique. On montre que si un corps fermé possède une frontière $mathcal{C}^{p+1}$-lisse (avec $pgeq 1$), alors sa projection métrique est de classe $mathcal{C}^p$ dans le tube ouvert associé à sa fonction de prox-régularité. On établit également une version locale du même résultat reliant la lissité de la frontière autour d'un point à la prox-régularité en ce point. On étudie par ailleurs le cas où l'ensemble est lui-même une $mathcal{C}^{p+1}$-sous-variété. Finalement, on donne des réciproques de ces résultats. / This work is divided in two parts: In the first part, we present an integration result in locally convex spaces for a large class of nonconvex functions which enables us to recover the closed convex envelope of a function from its convex subdifferential. Motivated by this, we introduce the class of Subdifferential Dense Primal Determined (SDPD) spaces, which are those having the necessary condition which allows to use the above integration scheme, and we study several properties of it in the context of Banach spaces. We provide a geometric interpretation of it, called the Faces Radon-Nikod'ym property. In the second part, we study, in the context of Hilbert spaces, the relation between the smoothness of the boundary of a prox-regular set and the smoothness of its metric projection. We show that whenever a set is a closed body with a $mathcal{C}^{p+1}$-smooth boundary (with $pgeq 1$), then its metric projection is of class $mathcal{C}^{p}$ in the open tube associated to its prox-regular function. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. We also study the case when the set is itself a $mathcal{C}^{p+1}$-submanifold. Finally, we provide converses for these results.
13

L'éclatement en géométrie algébrique, différentielle et symplectique

Herrera-Cordero, Esteban 04 1900 (has links)
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat. / The blow-up is a transformation which plays an important role in geometry, because it can be used to resolve singularities, relate birationally equivalent varieties, and construct varieties with new properties. This thesis first presents blowing-up as developped in classical algebraic geometry. We will study it in the case of affine and (quasi-)projective varieties, on a point and along an ideal and a subvariety. Then a discussion about its extension to the differential category will be carried out, over the real and complex fields, on a point and along a submanifold. An example of a resolution of singularity will then follow. Subsequently we will discuss blowing-up in the symplectic category, where we will do the same as for complex manifolds, paying careful attention to the symplectic form. To conclude, we will study a theorem by François Lalonde, where the symplectic blow-up plays a major part in proof. This theorem states that any 4-variety fibered by 2-spheres over a Riemann surface, and different than the Cartesian product of two 2-spheres, can be equiped with a 2-form giving it a symplectic structure ruled by curves that are holomorphic with respect to its almost-complex structure, and such that the symplectic area of the base is smaller that the capacity of the variety. In the proof, we blow up a ball in the 4-variety, and obtain a fibration containing two distinct spheres with a self-intersection equal to -1: the pre-image of the point where the usual complex blow-up is done, and the proper transform of the fiber. These two are exceptional, so it is possible to do the inverse operation - the blow down - on each of them. By blowing down the latter, we get a minimal variety, and by combining information about the symplectic area of its homology classes and of those of the original variety, we obtain the result.
14

L'éclatement en géométrie algébrique, différentielle et symplectique

Herrera-Cordero, Esteban 04 1900 (has links)
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat. / The blow-up is a transformation which plays an important role in geometry, because it can be used to resolve singularities, relate birationally equivalent varieties, and construct varieties with new properties. This thesis first presents blowing-up as developped in classical algebraic geometry. We will study it in the case of affine and (quasi-)projective varieties, on a point and along an ideal and a subvariety. Then a discussion about its extension to the differential category will be carried out, over the real and complex fields, on a point and along a submanifold. An example of a resolution of singularity will then follow. Subsequently we will discuss blowing-up in the symplectic category, where we will do the same as for complex manifolds, paying careful attention to the symplectic form. To conclude, we will study a theorem by François Lalonde, where the symplectic blow-up plays a major part in proof. This theorem states that any 4-variety fibered by 2-spheres over a Riemann surface, and different than the Cartesian product of two 2-spheres, can be equiped with a 2-form giving it a symplectic structure ruled by curves that are holomorphic with respect to its almost-complex structure, and such that the symplectic area of the base is smaller that the capacity of the variety. In the proof, we blow up a ball in the 4-variety, and obtain a fibration containing two distinct spheres with a self-intersection equal to -1: the pre-image of the point where the usual complex blow-up is done, and the proper transform of the fiber. These two are exceptional, so it is possible to do the inverse operation - the blow down - on each of them. By blowing down the latter, we get a minimal variety, and by combining information about the symplectic area of its homology classes and of those of the original variety, we obtain the result.
15

Sobre a Geometria de Imersões Riemannianas

Santos, Fábio Reis dos Santos 26 May 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-23T11:16:42Z No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) / Made available in DSpace on 2016-03-23T11:16:43Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) Previous issue date: 2015-05-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Our purpose is to study the geometry of Riemannian immersions in certain semi- Riemannian manifolds. Initially, considering linearWeingarten hypersurfaces immersed in locally symmetric manifolds and, imposing suitable constraints on the scalar curvature, we guarantee that such a hypersurface is either totally umbilical or isometric to a isoparametric hypersurface with two distinct principal curvatures, one of them being simple. In higher codimension, we use a Simons type formula to obtain new characterizations of hyperbolic cylinders through the study of submanifolds having parallel normalized mean curvature vector field in a semi-Riemannian space form. Finally, we investigate the rigidity of complete spacelike hypersurfaces immersed in the steady state space via applications of some maximum principles. / Nos propomos estudar a geometria de imersões Riemannianas em certas variedades semi-Riemannianas. Inicialmente, consideramos hipersuperfícies Weingarten lineares imersas em variedades localmente simétricas e, impondo restrições apropriadas à curvatura escalar, garantimos que uma tal hipersuperfície é totalmente umbílica ou isométrica a uma hipersuperfície isoparamétrica com duas curvaturas principais distintas, sendo uma destas simples. Em codimensão alta, usamos uma fórmula do tipo Simons para obter novas caracterizações de cilindros hiperbólicos a partir do estudo de subvariedades com vetor curvatura média normalizado paralelo em uma forma espacial semi-Riemanniana. Finalmente, investigamos a rigidez de hipersuperfícies tipo-espaço completas imersas no steady state space via aplicações de alguns princípios do máximo.

Page generated in 0.0617 seconds