• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de l’assemblage du VIH-1 et de l’organisation du cytosquelette sur la dynamique et la répartition membranaire des tétraspanines CD9 et CD81analysée à l’échelle de la molécule unique / Influence of HIV-1 assembly and cytoskeleton integrityon tetraspanins CD9 and CD81 dynamics and partitioninganalysed at the single molecule level

Rassam, Patrice 25 October 2012 (has links)
Les mécanismes moléculaires d'assemblage et de bourgeonnement des virus tels que le VIH-1 dans les cellules infectées sont encore relativement mal connus. Toutefois, il semble établi que la multimérisation de la protéine Gag s'effectue à la membrane plasmique et que le bourgeonnement des particules virales a lieu au niveau de zones enrichies en tétraspanines. Ces protéines transmembranaires forment un réseau d'interactions protéiques à la surface de la cellule et s'organisent en microdomaines différents des radeaux lipidiques, bien qu'enrichis en cholestérol.En utilisant la technique de suivi de molécules uniques fluorescentes sur des cellules HeLa exprimant la protéine Gag, l'objectif de mon travail de thèse était d'abord de déterminer l'influence de l'assemblage et le bourgeonnement de pseudoparticules virales sur la dynamique et la répartition membranaires des tétraspanines CD9 et CD81. Nos résultats renforcent l'émergence d'un nouveau concept, selon lequel les composants cellulaires et viraux, plutôt que de se regrouper au niveau de plateformes membranaires préexistantes, s'organisent en structures de taille croissante où les tétraspanines sont peu à peu concentrées avec leurs partenaires pour former une architecture propice à l'assemblage et la sortie du VIH-1.Par ailleurs, nous avons montré que CD81 était plus confiné et moins dynamique que CD9 et avons donc étudié les mécanismes moléculaires expliquant cette différence de comportement membranaire. L'utilisation du pistage en molécule unique couplé à des marquages d'ensemble, l'emploi de protéines chimériques et de drogues spécifiques ont permis de révéler que la dynamique membranaire de CD81 est restreinte par le réseau d'actine, via l'ezrine, mais implique aussi EWI-2 et CD9P-1, deux partenaires membranaires de CD9 et de CD81. Enfin, cette étude montre que cette interaction avec le cytosquelette est impliquée dans le recrutement de CD81 et indirectement de CD9, lors de l'assemblage du VIH. / Molecular mechanisms of assembly and budding of HIV-1 particles in infected cells are still a matter of debate. However it is now well established that Gag assembly occurs at the plasma membrane and that budding involves tetraspanin-enriched areas. Tetraspanins are transmembrane proteins that form a network of protein interaction at the cell surface organized into microdomains enriched in cholesterol but distinct from rafts.Using single molecule tracking of fluorescent markers with Gag-expressing HeLa cells, the aim my PhD thesis was first to determine the influence of Gag assembly and budding of pseudo particles on the dynamics and partitioning of the tetraspanins CD9 and CD81 at the plasma membrane. Our results support an emerging concept that cellular and viral components, instead of clustering at preexisting microdomains or platforms, direct the organization of growing structures where tetraspanins are more and more concentrated with their partners, in order to form a membrane scaffold that helps HIV-1 assembly and egress.In a second work, we showed that CD81 is more confined and less dynamic than CD9, and tried to clarify the molecular mechanisms involved in this differential behavior at the plasma membrane. Single molecule tracking, in addition to ensemble labeling experiments, CD9/CD81 chimeric proteins, as well as specific drugs, demonstrated that CD81 membrane dynamics is restricted by the actin network through ezrin proteins, but also implicates EWI-2 and CD9P-1, primary partners of CD9 and CD81. Finally, this study reveals that this interaction with the cytoskeleton is in part responsible of the recruitment of CD81 and indirectly of CD9 during HIV-1 assembly.
2

Mécanisme de diffusion-capture dans les synapses inhibitrices : suivi en molécule unique à haute densité et aspects thermodynamiques / Diffusion-trapping mechanisms in inhibitory synapses : high density single-molecule-tracking and thermodynamic parameters

Salvatico, Charlotte 14 October 2015 (has links)
La synapse est une structure macromoléculaire dont les composants sont renouvelés en permanence alors que l’assemblage est quasi-stable. A l’échelle mésoscopique, les récepteurs aux neurotransmetteurs (RN) sont accumulés dans le compartiment post-synaptique (PSD). Cette accumulation résulte de la diffusion latérale des RNs dans la membrane neuronale et de leurs immobilisations transitoires dans la PSD. Les protéines d’échafaudage (PE) localisées sous la membrane post-synaptique constituent des sites de capture en interagissant avec les RNs. Mon travail de thèse s’inscrit dans le cadre d’une collaboration avec des chimistes et des physiciens afin de comprendre les paramètres impliqués dans le processus de diffusion-capture. Nous nous sommes intéressés au cas de la capture du récepteur de la glycine (RGly) par les agrégats de PEs des synapses inhibitrices, les géphyrines. Nous avons étudié l’impact de la liaison RGly-géphyrine sur le processus de diffusion-capture sous deux aspects. Le premier est lié à la nature bimodale de liaison du RGly. Le second aborde l’impact des phosphorylations de la boucle M3-M4 de la sous-unité β du RGly sur la liaison avec la géphyrine.Mon travail de thèse montre qu’il est maintenant possible, en utilisant des approches de microscopie super-résolutive, de quantifier les aspects thermodynamiques des interactions moléculaires dans les cellules vivantes. / The synapse is a macromolecular structure whose components are constantly renewed while the assembly remains quasi-stable. At the mesoscopic level, neurotransmitter receptors (RNs) accumulate in the post-synaptic compartment (PSD). This accumulation is the result of the lateral diffusion of RNs in the neuronal membrane and transient immobilization within the PSD. This mechanism, called diffusion-trapping has been highlighted by single-molecule-tracking techniques. Scaffold proteins (PE) are localized under the post-synaptic membrane. These proteins form trapping-sites by interacting with RNs. Through an interdisciplinary approach in collaboration with chemists and physicists, the aim of my doctoral research was to understand the parameters that are involved in diffusion-trapping mechanisms. We especially focused on glycine receptor (RGly) trapping by PE clusters at inhibitory synapses, namely the scaffold protein gephyrin. The gephyrin- interaction motif of the GlyR is located within the cytoplasmic domain of the β-subunit of the receptor, the so-called β-loop. Two aspects of the impact of RGly-gephyrin binding on diffusion-trapping were studied. The first was to identify the source of the RGly-gephyrin bimodal binding. The second one addressed the regulation of gephyrin binding by phosphorylation of the GlyR βLoop.My research thus shows that it is now possible to quantify thermodynamic aspects of molecular interactions in living cells using high-density single-molecule-tracking.
3

Investigation des fonctions de la protéine du pore nucléaire TPR en utilisant la microscopie à molécule unique

Bop, Bineta 08 1900 (has links)
Le complexe de pores nucléaires est le seul point d'entrée et de sortie du transport nucléocytoplasmique. Le panier nucléaire, l'un de ses principaux composants, s'est avéré impliqué dans la régulation des gènes et pourrait jouer un rôle majeur dans le contrôle de la qualité de l'export d'ARNm. Cependant, on sait peu de choses sur le fonctionnement du panier dans l'export nucléaire et la régulation des gènes. La principale composante structurelle du panier, la TPR (Translocated Promoter Region), est considérée comme l'acteur principal de la fonction de contrôle de la qualité du panier. Il reste à établir par quel mécanisme cette protéine assure la sélection des mRNP compétentes pour l'exportation. Malgré son implication connue dans le contrôle de la qualité des mRNP, l'exportation et la maturation, des questions demeurent: que fait vraiment le panier, qu'est-ce qui définit le contrôle qualité, comment le panier nucléaire est-il capable d'identifier l'ARN qui n'est pas compétent pour l'exportation et quels sont les rôles de différentes protéines composant le panier nucléaire. Récemment, il a été montré que la protéine TPR est présente dans deux populations, l'une dans le nucléoplasme et l'autre liée au NPC. Nos études préliminaires utilisant FRAP (Fluorescence Recorvery After Photobleaching) et la microscopie à molécule unique montrent que les molécules nucléoplasmiques de TPR ne sont pas impliquées dans un échange rapide avec les molécules assemblant avec les paniers ancrés au NPC et présentent différentes sous-populations basées sur la diffusion. L'analyse de études protéomiques préliminaires de notre laboratoire a révélé que l’interactome de TPR présente un enrichissement inattendu en protéines impliquées dans la maturation de l'ARNm, notamment l'épissage et les facteurs de traitement de l'extrémité 3'. Ces résultats pourraient suggérer des interactions complexes des nouvelles fractions nucléoplasmiques de TPR avec la machinerie de maturation des ARNms et nous amènent à poser les questions suivantes : Quelle est la fonction de la protéine du panier TPR lorsqu'elle n'est pas associée au NPC, et la TPR nucléoplasmique participe-t-elle au métabolisme de l'ARN nucléaire, reliant potentiellement les processus nucléaires au contrôle de la qualité au NPC? Mon projet s'est concentré sur l'étude des fonctions et de la dynamique de la protéine du panier nucléaire TPR à l'aide de techniques d'imagerie fluorescente en cellule vivante et de suivi de protéine unique. Nous avons pu identifier la dynamique et la localisation des différentes populations de TPR à partir des profils de diffusion de leurs trajectoires, qui peuvent être réparties en 5 catégories : Dirigée, Brownienne, Restreinte, Confinée et Butterfly. Nos données suggèrent que les trajectoires confinées pourraient être liée à l’association de TPR à la chromatine tandis que les browniennes représenteraient les molécules de TPR diffusant librement dans le noyau. De plus, nous avons constaté que les trajectoires dirigées et restreintes pourraient être liées à la maturation de l'ARN vu que ces deux sous-populations de TPR sont les plus affectées lorsque la transcription est inhibée. Également, en absence de la transcription par l’ARN polymérase II, TPR forme des granules dans le nucléoplasme, suggérant son implication durant la transcription active. Ainsi, notre étude montre que la fraction nucléoplasmique du TPR est subdivisée en fractions non associées aux pores hétérogènes qui pourraient jouer plusieurs rôles dans le métabolisme de l'ARN et la qualité de l'export. / The nuclear pore complex is the only entry and exit point for the nucleocytoplasmic transport. The nuclear basket, one of its main components, was shown to be involved in gene regulation and could play a major role in quality control of mRNA export. However, little is known on how the basket functions in nuclear export and gene regulation. The main structural component of the basket, TPR (Translocated Promoter Region), is thought to be the main actor in the quality control function of the basket. It is yet to be establish by which mechanism this protein ensures the selection of competent mRNPs for export. With all these involvement of the basket in quality control, export, and maturation, one question remains: What is the basket really doing, what defines quality control, how the nuclear basket can identify RNAs that aren’t competent for export, and what are the roles of the different proteins that make up the basket. Recently it was shown that TPR is present in two populations, one in the nucleoplasm and another bound at the NPC. Our preliminary studies using FRAP (Fluorescence Recovery After Photobleaching) and single molecule microscopy shows that the nucleoplasmic TPR molecules aren’t exchanging with the baskets anchored at the NPC and present different subpopulations based on diffusion. Analysis of preliminary proteomics studies from our laboratory revealed an interactome with an unexpected enrichment of proteins involved in mRNA maturation notably splicing and 3’ end processing factors. These results imply complex interactions of the new fractions of TPR and lead us to ask these following questions: What is the function of the basket protein TPR when it is not associated with the NPC, and does nucleoplasmic TPR participate in nuclear RNA metabolism, potentially linking nuclear processes to quality control at the NPC? My project focused on investigating the functions and dynamics of the nuclear basket protein TPR using fluorescent live-cell and single-protein imaging techniques. We were able to identify the dynamics and localization of the different populations of TPR based on the diffusion profiles of their trajectories, which can be divided in 5 categories: Directed, Brownian, Restricted, Confined and Butterfly. Our data suggest that the confined population might be linked to chromatin association of TPR, whereas the Brownian would represent the free diffusing TPR molecules in the nucleus. We further found that the Directed and Restricted trajectories could be linked to RNA maturation as these two subpopulations of TPR are most affected when transcription is inhibited. Moreover, in absence of transcription, TPR forms granules in the nucleus, suggesting its implication during active transcription. Altogether, our study shows that the nucleoplasmic fraction of TPR is subdivided in heterogenous diffusive fractions that could play several roles in the metabolism of RNA and quality of export

Page generated in 0.0777 seconds